

Guide rail product catalogue

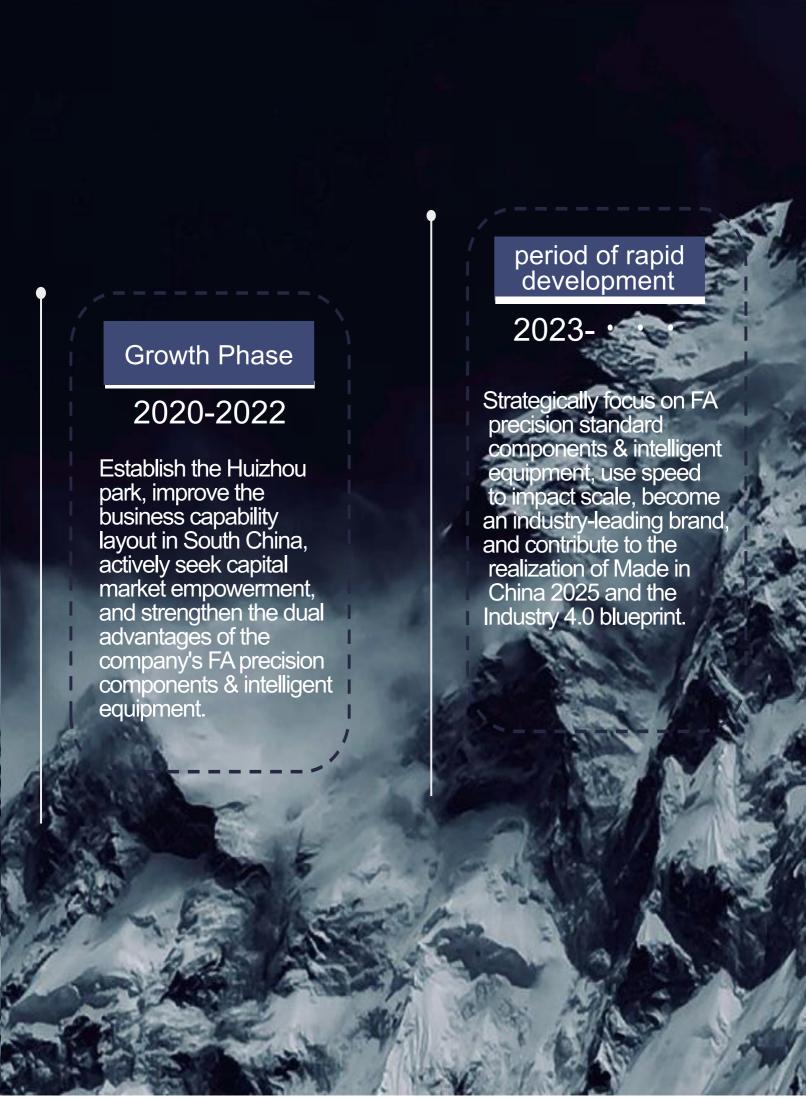






# Development Process

Climbing period


2018-2020

Self-established Suizhou Industrial Park, Strategically positioned FA standard parts, Initially forming a nationwide service network layout.

### Startup Stage

2013-2018

Based in the two major parks of Longhua and Guangming in Shenzhen, complete process research, standard setting, and supply chain verification!



#### Linear guide indexing

#### Heavy-duty ball linear guide WHG series

P21



| Slider type                                              | Guide rail size<br>mm | Load type                 | Slider<br>Fixing<br>method | Guide rail<br>Fixing<br>method |      |
|----------------------------------------------------------|-----------------------|---------------------------|----------------------------|--------------------------------|------|
|                                                          | 15                    |                           |                            |                                |      |
| Flange<br>type<br>Square<br>type<br>Square<br>type (low) | 20                    | Heavy<br>load<br>Overload | Lockable                   |                                |      |
|                                                          | 25                    |                           | type<br>Bottom-            | Lockable                       |      |
|                                                          | 30                    |                           | lockable type              |                                |      |
|                                                          | 35                    |                           |                            | Top and                        | type |
|                                                          | 45                    |                           | bottom                     | Bottom                         |      |
|                                                          | 55                    |                           | lockable type              | -lock type                     |      |
|                                                          | 65                    |                           |                            |                                |      |

### Low-assembly type ball linear guide WEG series

P43



| Slider type                | Guide rail size<br>mm | Load type        | Slider<br>Fixing<br>method                  | Guide rail<br>Fixing<br>method |
|----------------------------|-----------------------|------------------|---------------------------------------------|--------------------------------|
| Flange type<br>Square type | 15                    |                  | Lockable                                    |                                |
|                            | 20                    | Heavy            | type<br>Bottom-<br>lockable type<br>Top and | Lockable                       |
|                            |                       | load<br>Overload |                                             | Bottom                         |
|                            | 30                    |                  | bottom<br>lockable type                     | -lock type                     |
|                            | 35                    |                  | ookable type                                |                                |

### Micro-miniature ball linear guide rails, WG series

P60



| Туре                                                      | Guide rail size<br>mm | Load type     | Material                    |  |
|-----------------------------------------------------------|-----------------------|---------------|-----------------------------|--|
| Standard<br>type<br>Wide type<br>Positioning<br>hole type | 5                     |               |                             |  |
|                                                           | 7                     | Standard type | General steel               |  |
|                                                           | 9                     | Extended type | material<br>Stainless steel |  |
|                                                           | 12                    | Short type    | material                    |  |
|                                                           | 15                    |               |                             |  |

#### Cross Roller Slide WVR Series

P72



| Model<br>number | Туре                                  | Guide rail<br>material | Retainer<br>material | Roller<br>material |
|-----------------|---------------------------------------|------------------------|----------------------|--------------------|
| WVRT            | Threaded abutment                     | 440C                   | SUS304               | GCr15              |
| WVRT-A          | Abutment<br>installation<br>hole type |                        | 303304               | 90113              |

#### Cross Roller Slide WVR Series

P72



| Model  | Туре             | Guide rail | Retainer | Roller   |
|--------|------------------|------------|----------|----------|
| number |                  | material   | material | material |
| WVRU   | Standard<br>type | 440C       | SUS304   | GCr15    |

#### Cross Roller Guide - WV Series

P82



|   | Model<br>number | Type           | Guide rail<br>material | Retainer<br>material | Roller<br>material |
|---|-----------------|----------------|------------------------|----------------------|--------------------|
| 1 | WVR             | Roller<br>type | 1400                   | SUS304               | GCr15              |
|   | WVB             | Ball type      | 440C                   | 303304               | 50113              |

| MEMO |      |
|------|------|
|      |      |
|      | <br> |
|      | <br> |
|      | <br> |
|      |      |
|      |      |
|      | <br> |
|      | <br> |
|      | <br> |
|      |      |
|      |      |
|      |      |
|      | <br> |
|      | <br> |
|      |      |
|      |      |
|      | <br> |
|      | <br> |
|      | <br> |
|      |      |
|      |      |
|      | <br> |
|      | <br> |
|      | <br> |
|      |      |
|      | <br> |
|      | <br> |
|      | <br> |

#### **Preface**

Linear guide systems are a type of rolling guidance. Through the infinite rolling circulation of steel balls between the slider and the guide rail, the load platform can easily perform linear motion with high precision along the guide rail. Compared with traditional sliding guidance, the friction coefficient of rolling guidance can be reduced to 1/50 of the original. Due to the significant reduction in starting friction, there is relatively less ineffective motion, and thus it can easily achieve µm-level feed and positioning. In addition, the design of the restraint unit between the slider and the guide rail enables the linear guide to simultaneously withstand loads in all directions such as up, down, left, and right. These listed features are not comparable to traditional sliding guidance. Therefore, if the machine can be combined with a ball screw and use a linear guide for guidance, it will surely greatly improve the accuracy and mechanical efficiency of the equipment.

#### **Basic Information**

#### 1-1Advantages and Characteristics of Linear Guide Rails

#### 1-1-1Advantages

#### (1) High positioning accuracy

When linear guides are used as linear guidance, due to the rolling friction of the linear guides, the friction coefficient is reduced to 1/50 of that of sliding guidance, and the difference between dynamic and static friction forces also becomes very small. Therefore, when the bed moves, there will be no slipping phenomenon, and positioning accuracy at the µm level can be achieved.

#### (2)Low wear ensures long-term maintenance of accuracy.

The traditional sliding guide is inevitably affected by the backflow of the oil film, resulting in poor movement accuracy of the platform. Moreover, due to insufficient lubrication during movement, the contact surface of the running track wears out, seriously affecting the accuracy. However, the wear of the rolling guide is very small, so the machine tool can maintain accuracy for a long time.

(3)Suitable for high-speed operation and significantly reducing the required driving horsepower of the machine. Due to the extremely low friction when the linear guide moves, only a small amount of power is needed to operate the bed, especially when the bed operates in a frequent back-and-forth manner, which can significantly reduce the power consumption of the machine. Moreover, because the heat generated by friction is small, it is suitable for high-speed operation.

(4)It can withstand loads from all directions simultaneously, including up, down, left and right.

Due to the special restraint structure design of the linear guide, it can simultaneously withstand loads from the top, bottom, left and right directions. Unlike sliding guides, which can only bear relatively light lateral loads in the parallel contact surface direction, this can easily lead to poor operating accuracy of the machine.

#### (5)Easy to assemble and interchangeable.

When assembling, just mill or grind the assembly surface of the guide rail on the machine bed, and then fix the guide rail and slider to the machine bed respectively according to the recommended steps with the specified torque. This can reproduce the high precision during processing. For the traditional sliding guide, the running track needs to be scraped, which is both time-consuming and laborious. Moreover, if the machine accuracy is poor, it needs to be scraped again. The linear guide has interchangeability. The slider or guide rail or even the linear guide set can be replaced separately, and the machine can regain high-precision guidance.

#### (6)The lubrication structure is simple.

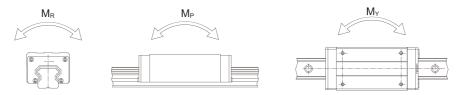
If the sliding guide is insufficiently lubricated, it will cause direct metal-to-metal friction and wear on the bed. However, it is not easy to ensure adequate lubrication for the sliding guide, which requires drilling holes at appropriate positions on the bed for oil supply. In contrast, linear guides are equipped with oil nozzles on the sliders, allowing for direct injection of grease using an oil gun or connection to a dedicated oil pipe fitting for automatic lubrication by an oil supply machine.

#### 1-2. Selection criteria

#### Usage condition setting The equipment Load mode Limitations of The requirement The demand for application internal space for precision for rigidity Itinerary O Running speed, • Frequency Usage Required service acceleration of use environment life years Select the series of products • WHG Series: Grinding machines, milling machines, lathes, drilling machines, multi-purpose machining centers, electrical discharge machines, boring machines, wire cutting machines, precision measuring instruments, woodworking machines, handling machines, and conveying devices. WEG Series: Product automation machines, semiconductor machinery, laser engraving machines, packaging machines. • WG Series: printers, robotic arms, electronic instruments and equipment, semiconductor equipment. Select the accuracy grade • The grades of C, H, P, SP and UP are determined by the precision requirements of the equipment. Assume the size and number of the sliders. Select based on experience Load status o If used in conjunction with a ball screw, the specification of the linear guide should be similar to the outer diameter of the screw. For instance, if the outer diameter of the screw is 32mm, a specification similar to WHG35 should be selected. Calculate the maximum load of the slider. Calculate the maximum equivalent load of a single slider by referring to the load calculation example. • The static safety factor of the selected linear guide should exceed the value listed in the static safety factor usage table. Select the preload pressure Select according to the rigidity requirements and the precision of the installation surface. Confirm rigidity Calculate the deformation amount by referring to the rigid table. Increase the pre-pressure, select larger dimensions or increase the number of sliders to enhance rigidity. Calculate service life O Calculate the life distance requirement based on the usage speed and frequency Calculate the life distance of the selected linear guide rail according to the life formula Lubrication selection The selection of lubricants depends on the equipment requirements. Grease, lubricating oil or special lubricants can be chosen for lubrication. Regular injection of grease or automatic oil supply is available. The selection of linear guides is completed.

#### 1-3Rated load

#### 1-3-1Basic static rated load


#### (1)The definition of basic static rated load (C<sub>0</sub>)

If the linear guide is subjected to excessive load or significant impact load while at rest or in motion, it will cause local permanent deformation on the contact surface of the raceway and the steel balls. When the permanent deformation exceeds a certain limit, it will affect the smoothness of the linear guide's movement. The basic static load rating is the maximum load that allows this permanent deformation. According to the definition, it is the static load at which the total permanent deformation of the steel balls and the raceway surface at the contact point under the maximum stress is exactly one ten-thousandth of the steel ball's diameter when the load direction and magnitude remain unchanged. The values of the basic static load ratings are detailed in the specification and dimension tables. Users can refer to the tables to select the appropriate linear guide, but it is necessary to note that the maximum static load that the selected linear guide is subjected to during operation must not exceed its basic static load rating.

The values of the basic static rated load are detailed in the specification and dimension tables. Users can refer to the tables to select the appropriate linear guide, but it must be noted that the maximum static load the selected linear guide is subjected to during operation must not exceed its basic static rated load.

#### (2)Definition of Allowable Static Moment(M<sub>0</sub>)

When the steel balls in the slider subjected to the maximum stress reach the static rated load as defined above, the torque carried by the slider at this time is called the static rated torque. In the movement of linear guides, it is defined in the three directions of MR, MP, and MY:



#### (3) Static safety factor

When linear guides are used in slow motion or with a low actuation frequency, the static safety factor must be considered. Depending on different usage conditions, different safety factors must be taken into account when calculating the static load, especially when the guide is subjected to impact loads, a larger safety factor should be adopted.

Table 1: Application of Static Safety Factor

| Load conditions                       | f <sub>SL</sub> , f <sub>SM</sub> lower limit |
|---------------------------------------|-----------------------------------------------|
| General operating condition           | 1.0~3.0                                       |
| Impact and vibration during operation | 3.0~5.0                                       |

$$f_{SL} = \frac{C_0}{P}$$
 Or perhaps  $f_{SM} = \frac{M_0}{M}$  Eq.1.1

f<sub>SL</sub>: Static safety factor

f<sub>SM</sub>: Static safety factor (moment load)

C<sub>0</sub>: Basic static rated load (kN)

Mo: Basic static rated load (kN·m)

P: Working load (kN)

M: Static moment load (kN•m)

#### 1-3-2Basic dynamic rated load

#### (1)The definition of the basic dynamic rated load (C)

The basic dynamic load rating is used for the life calculation of linear guides when they bear loads and perform rolling motion. It is defined as the maximum load at which the rated life of the linear guide is 50 km (100 km for rolling type linear guides) under the condition that the direction and magnitude of the load remain unchanged. This value is detailed in the specification and dimension tables, and users can use this value to estimate the rated life of the selected linear guide in advance.

#### 1-4The service life of linear guides

#### 1-4-1lifespan

When the linear guide bears a load and moves, the raceway surface and the steel balls are constantly subjected to cyclic stress. Once the critical value of rolling fatigue is reached, fatigue damage will begin to occur at the contact surface, and fish-scale-like thin flakes will start to peel off on some parts of the surface. This phenomenon is called surface spalling. The definition of life is the total running distance until surface spalling occurs on the raceway surface and the steel balls due to material fatigue.

#### 1-4-2Rated service life

The lifespan of linear guides has significant variability. Even products from the same batch, when used under the same motion conditions, will have different lifespans. This is mostly attributed to inherent variations in the fatigue characteristics of the materials themselves. Therefore, to define the lifespan of linear guides, the rated lifespan is generally used as a benchmark. It is defined as the total running distance that 90% of a batch of the same products can achieve without surface spalling when operated under the same conditions and rated load, one by one.

#### 1-4-3The calculation of lifespan

The lifespan of linear guides varies depending on the actual working load they bear. The service life can be estimated based on the basic dynamic load rating of the selected linear guide and the working load.

(1) Without considering the influence of environmental factors, the lifespan is calculated as follows.

Ball type:L=
$$\left(\frac{C}{P}\right)^3$$
• 50km= $\left(\frac{C}{P}\right)^3$ • 31mile Eq.1.2

Ball type: 
$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} \cdot 100 \text{km} = \left(\frac{C}{P}\right)^{\frac{10}{3}} \cdot 62 \text{mile}$$
 Eq.1.3

L: Rated service life

C: Basic dynamic rated load

P: workload

(2)If environmental factors in the application of linear guides are taken into account, their service life will vary with the state of motion, the hardness of the ball track surface and the system temperature.

Ball type: L= 
$$\left(\frac{f_h \circ f_l \circ C}{f_W \circ P_C}\right)^3 \circ 50$$
km=  $\left(\frac{f_h \circ f_l \circ C}{f_W \circ P_C}\right)^3 \circ 31$ mile Eq.1.4

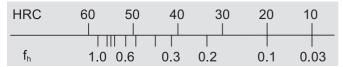
Roller type L= 
$$\left(\frac{f_h \cdot f_i \cdot C}{f_W \cdot P_C}\right)^{\frac{10}{3}} \cdot 100 \text{km} = \left(\frac{f_h \cdot f_i \cdot C}{f_W \cdot P_C}\right)^{\frac{10}{3}} \cdot 62 \text{mile}$$
 Eq.1.5

L: lifespan

f<sub>h</sub>: Hardness coefficient

C: Basic dynamic rated load

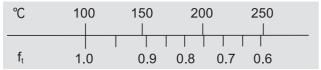
ft: temperature coefficient


P<sub>c</sub>: workload f<sub>w</sub>: Load factor

#### 1-4-4Life expectancy coefficient

#### (1)Hardness coefficient(fh)

The hardness of the contact surface of the ball track of the linear guide is required to be HRC 58 to 62 at a certain hardened depth. If the hardness value cannot reach the required level, it will reduce the rated load and service life of the linear guide. At this time, the dynamic and static rated loads are the values listed in the size table multiplied by the corresponding hardness coefficient. The hardness requirement of the linear guide produced by WODTOP is all above HRC 58, so fn is 1.


#### Raceway hardness



#### (2)temperature coefficient(ft)

The system temperature can affect the material of the linear guide. When the temperature exceeds 100°C, the rated load and service life of the linear guide will decrease. At this time, the dynamic and static rated loads are the values listed in the size table multiplied by the corresponding temperature coefficient. Since some accessories are made of plastic and are not resistant to high temperatures, it is recommended that the usage temperature be below 100°C.

#### Temperature



#### (3)Load factor(fw)

The loads acting on the linear guide rails include not only the self-weight of the device itself, the inertial loads during start-up and stoppage, and the moment loads due to overhang, but also the vibration and shock loads that accompany the movement. Such types of loads are not easy to calculate. Based on experience, it is recommended to multiply the calculated load value by the corresponding load factor according to the load condition and usage speed.

#### Table 2 Load Coefficient

| Load condition                          | Usage speed          | f <sub>W</sub> |
|-----------------------------------------|----------------------|----------------|
| Weak and smooth                         | V≤15m/min            | 1~1.2          |
| Minor impact force                      | 15m/min < V≤60m/min  | 1.2~1.5        |
| Ordinary load capacity                  | 60m/min < V≤120m/min | 1.5~2.0        |
| Subjected to impact force and vibration | V > 12m/min          | 2.0~3.5        |

#### 1-4-5Conversion of lifespan time

Convert the lifespan distance into lifespan time based on the usage speed and frequency.

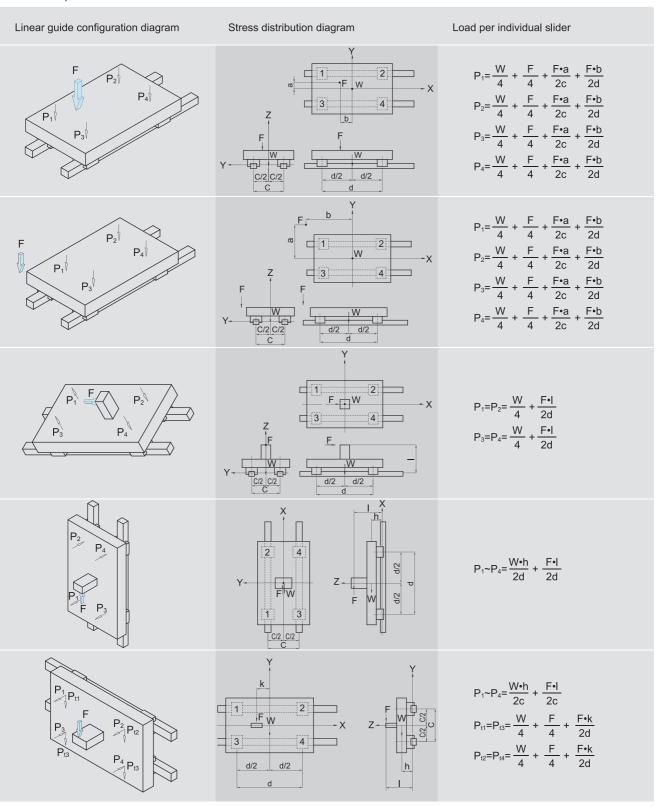
Ball type: 
$$L_h = \frac{L \cdot 10^3}{V_o \cdot 60} = \frac{\left(\frac{C}{P}\right)^3 \cdot 50 \cdot 10^3}{V_o \cdot 60} \text{ hr}$$
 Eq.1.6

Roller type: 
$$L_h = \frac{L \cdot 10^3}{V_e \cdot 60} = \frac{\left(\frac{C}{P}\right)^{\frac{10}{B}} \cdot 100 \cdot 10^3}{V_e \cdot 60} \text{ hr}$$
 Eq.1.7

L<sub>h</sub> : Life span(hr)
L : lifespan(km)

V<sub>e</sub>: operating speed(m/min)

C/P : Load ratio


#### 1-5workload

#### 1-5-1Workload calculation

The calculation method of the working load will vary depending on the actual force distribution situation, such as the position of the center of gravity of the object being carried, the position of the applied force, and the acceleration during start-up and stoppage when in operation, as well as inertial forces, all of which affect the load calculation. Therefore, when using linear guides, various load conditions must be carefully considered to calculate the most accurate load value.

#### (1)Load borne by a single slider

Table 3 Example of Load Calculation



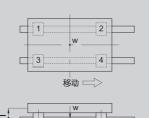
Note: W:weight

P<sub>n</sub>:Load (radial and anti-radial of slider)n=1~4

F:external force

Ptn:Load (slider lateral)n=1~4

a,b,k:The distance from the external force to the geometric center


c:Guide rail span d:Slider span I: Distance from the external force to the driving source h:The distance from the center of gravity to the driving source

#### (2)Inertial force load

Table 4 Example of Inertial Force Load Calculation

An example considering acceleration and deceleration

The force acting on a single slider



F: Drive thrust(N)

W: The weight of the device(N)

g: acceleration due to gravity(9.8m/sec2)

Pn: Load (radial, counter-radial)n=1~4

Vc: speed

tn: Constant speed at a fixed timen=1~3

c, d, I: distance

Types of load variations



o constant speed

$$P_1 \sim P_4 = \frac{W}{4}$$

o accelerate

$$P_{1}=P_{3}=\frac{W}{4}+\frac{1}{2}\cdot\frac{W}{g}\cdot\frac{V_{c}}{t1}\cdot\frac{I}{d}$$

$$P_{2}=P_{4}=\frac{W}{4}-\frac{1}{2}\cdot\frac{W}{g}\cdot\frac{V_{c}}{t1}\cdot\frac{I}{d}$$

o slow down

$$P_1 = P_3 = \frac{W}{4} - \frac{1}{2} \cdot \frac{W}{g} \cdot \frac{V_c}{t3} \cdot \frac{I}{d}$$

$$P_2 = P_4 = \frac{W}{4} + \frac{1}{2} \cdot \frac{W}{g} \cdot \frac{V_c}{t3} \cdot \frac{I}{d}$$

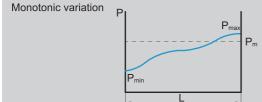
#### 1-5-2Average load calculation

During operation, the load on the slider is not always uniform. For instance, in the case of a conveying device, it bears the additional weight of the goods when moving forward but only its own weight when returning. The load changes in a stepwise manner. Therefore, it is necessary to calculate the average load during operation to determine the lifespan. The average load is defined as the equivalent load value that results in the same lifespan under varying load conditions.

Table 5 Example of Average Load Calculation

# 

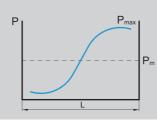
Average load-bearing capacity


 $P_{m} = \sqrt[3]{1/L(P_{1}^{3} \cdot L_{1} + P_{2}^{3} \cdot L_{2} + \dots + P_{n}^{3} \cdot L_{n})}$ 

P<sub>m</sub>: average load

P<sub>n</sub>: Variable load

L: Total running distance

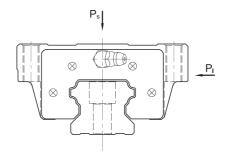

 $L_n$ : The operating distance under  $P_n$  load



 $P_m = 1/3(P_{min} + 2 \cdot P_{max})$ 

 $P_m$ : average load  $P_{min}$ : Minimum load  $P_{max}$ : Maximum load

Sinusoidal variation




 $P_m = 0.65 \cdot P_{max}$ 

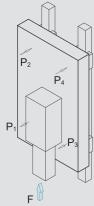
 $P_m$ : average load  $P_{max}$ : Maximum load

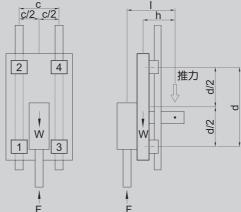
#### 1-5-3Equivalent load calculation in two directions

WODTOP linear guides can withstand loads in the up, down, left and right directions. Therefore, when using linear guides, they may simultaneously be subjected to vertical loads ( $P_s$ ) and lateral loads ( $P_i$ ). The equivalent load ( $P_e$ ) can be calculated according to the following formula.



WHG/WEGSeries


| $P_e = P_s + P_I$                            | ••••• | Eq.1.5 |
|----------------------------------------------|-------|--------|
| WGSeries                                     |       |        |
| When $P_s > P_I$ $P_e = P_s + 0.5 \cdot P_I$ |       | Eq.1.6 |
| When $P_I > P_s$ $P_e = P_I + 0.5 \cdot P_s$ |       | Eq.1.7 |


#### 1-5-4Example of Calculating the Service Life of Linear Guide Rails

Based on experience, select the type and specification of the linear guide rail, and then estimate the maximum working load of a single slider according to the actual usage conditions. Calculate the load ratio of the dynamic rated load to the working load to predict its service life.

Table 6 Example of Life Span Calculation

| rable of Example of Elio opair odiodiation           |                                              |                                                                                                                               |
|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Specifications for the Use of Linear Guides          | Equipment dimensions                         | Processing conditions                                                                                                         |
| Type: WHGH30CA C: 37.74kN Co: 52.19kN Preloading: Z0 | d: 600mm<br>c: 400mm<br>h: 200mm<br>I: 250mm | The weight of the device itself(W): 15kN Drilling force(F): 1kN System temperature: Room temperature Load status: Normal load |
|                                                      | c/2 c/2                                      | <br>  h                                                                                                                       |





O Calculation of load-bearing capacity of slider

$$P_1 \sim P_4 = +\frac{Wxh}{2d} - \frac{Fxl}{2d} = +\frac{15x200}{2x600} - \frac{1x250}{2x600} = 2.29(kN)$$

$$P_{max} = |P_1 \sim P_4| = 2.29(kN)$$

 $lue{\circ}$  Because Z0 pre-press is selected, therefore  $P_{\text{max}} = 2.29 (kN)$ 

Note: If heavier pre-pressing (ZA, ZB) is chosen, although the rigidity will be enhanced, its service life will be reduced.

Calculation of lifespan L

$$L = \left(\frac{f_h x f_t x C}{f_w x P_c}\right)^3 x 50 = \left(\frac{1 \times 1 \times 38.74}{2 \times 2.29}\right)^3 x 50 = 30,258 \text{(km)}$$

#### 1-6frictional force

Linear guides use steel balls for rolling guidance, so their friction can be reduced to 1/50 of that of traditional sliding guidance. Especially, the static friction is very small and not much different from the dynamic friction, thus no idling or slippage will occur and micron-level motion accuracy can be achieved. Generally speaking, the friction coefficient of linear guides is about 0.004. The resistance of the oil scraper varies depending on the specifications, and the values are listed in the friction force section of each specification.

F=µ•W+S Eq.1.8

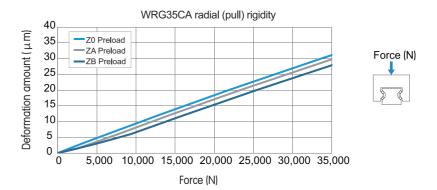
F: frictional force(kN)

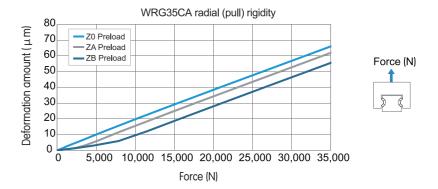
S: Resistance of oil scraper blade(kN)

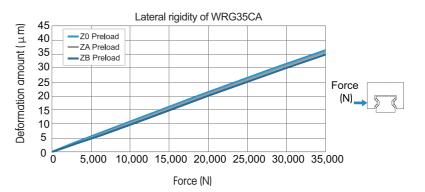
μ: Coefficient of friction

W: Vertical load during movement(kN)

#### 1-7Preload and Rigidity Performance


In the field of linear motion of rolling elements, increasing preload can effectively enhance the rigidity of the slider, but it will affect the rated life of the slider. The definition of rigidity is shown in the following formula. The preload grades of HIWIN sliders are classified into three levels: light preload Z0, medium preload ZA, and heavy preload ZB. Each preload grade presents different rigidity performance. The better the rigidity, the lower the deformation of the slider. The following figure is an example.


$$K = \frac{P}{\delta}$$


δ: Deformation amount(μm)

P: exert force(N)

K: rigidity(N/µm)







#### 1-8Lubrication

If linear guides are not properly lubricated, the friction of the rolling parts will increase. Over time, this will become the main cause of shortened service life. Lubricants provide the following functions:

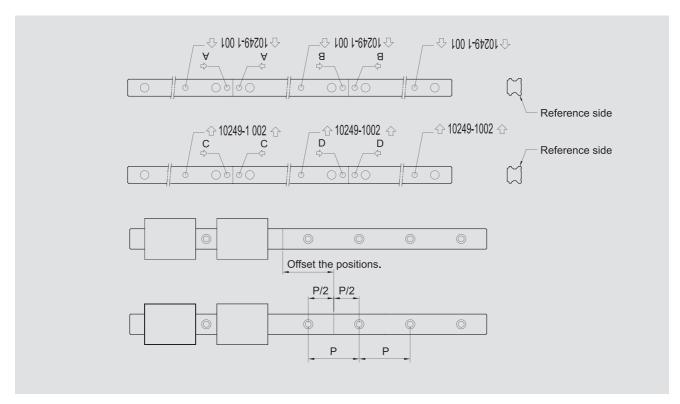
- Reduce the friction of the rolling part, prevent burning and lower the wear.
- An oil film formed between the rolling surfaces can extend the rolling fatigue life.
- O Prevent rusting.

#### 1-8-1Lubricating grease(GREASE)

Each set of linear guide rails is equipped with a lubricating ball groove track. Although the lubricating grease is less likely to be lost, to avoid insufficient lubrication due to grease loss, it is recommended that customers replenish the lubricating grease once when the running distance reaches 100 km. At this time, a grease gun can be used to inject the grease into the slider through the oil nozzle attached to the slider. The lubricating grease is suitable for applications where the speed does not exceed 60 m/min and there is no requirement for cooling effect.

 $T = \frac{100 \cdot 1000}{100 \cdot 1000} \, hr$  Eq.1.9

T: Oil injection frequency(hour)

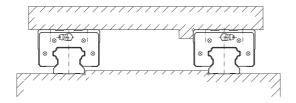

V<sub>e</sub>: speed(m/min)

#### 1-8-2Lubricating oil(OIL)

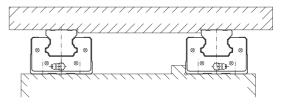
It is recommended that customers use lubricating oil with a viscosity of approximately 30 to 150 cSt to lubricate linear guides. WODTOP can install oil pipe connectors at the original oil drain port according to customer requirements. Therefore, customers only need to connect the pre-installed oil pipe of the machine to the oil pipe connector. The consumption of lubricating oil is faster than that of lubricating grease. When using it, it is necessary to pay attention to whether the oil supply is sufficient. Insufficient lubrication can easily cause abnormal wear of the linear guide and reduce its service life. It is recommended to apply oil at a frequency of approximately 0.3 cm3/hr. Customers can use it as appropriate based on their usage conditions. Lubricating oil is suitable for various load and speed conditions, but it is not suitable for high-temperature lubrication due to its volatility.

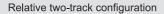
#### 1-9Guide rail joint piece

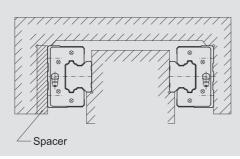
When installing the guide rail spacers, they must be installed in the order indicated on the guide rail to ensure the accuracy of the linear guide rail. It is also recommended that the positions of the paired guide rail spacers be staggered to avoid accuracy problems at the connection point of the bed and the spacer due to differences in the guide rails.



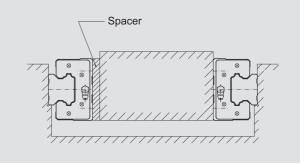

#### Configuration of 1-10 Linear Guides


Linear guides can withstand loads in the up, down, left and right directions. Therefore, linear guide sets can be configured according to the structure of the machine and the direction of the working load.

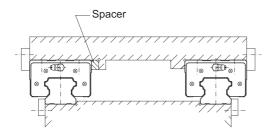

Each single guide rail is equipped with a support surface.


Two-track slider movement configuration

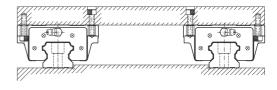



Two-track slider movement configuration









Back-to-back double-rail configuration



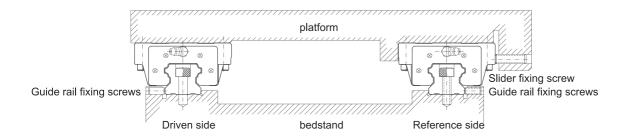
Comprehensive fixed configuration



The WHGW type slider assembly bolts are configured in different directions.

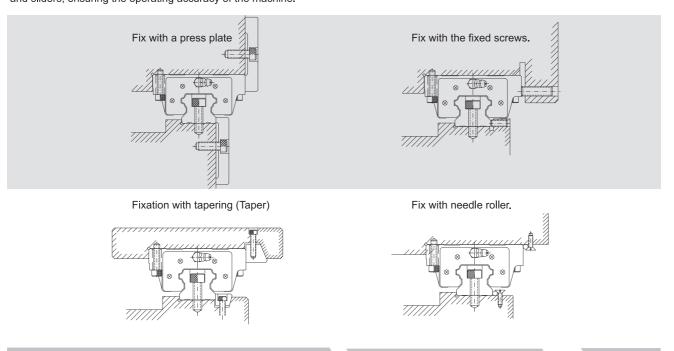


#### 1-11Installation of linear guides


The installation method of linear guides must be determined based on the usage conditions of the machine, such as the degree of vibration and shock force, the required travel accuracy, and the limitations of the machine.

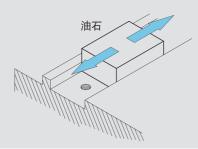
#### 1-11-1The reference rail and the driven rail

When non-interchangeable linear guides are used in pairs, it is necessary to pay attention to the differences between the reference rail and the driven rail. The precision of the reference surface on the side of the reference rail is higher than that of the driven rail, and it can be used as the installation support surface of the bed. There is a mark of "MA" engraved on the reference rail, as shown in the figure.

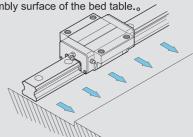



1-11-2The bedplate is subject to vibration and impact forces, and requires high rigidity and high-precision installation.

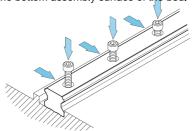



#### (1)Fixed method

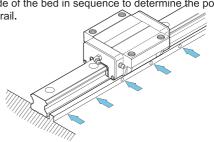
When the bed is subjected to vibration or impact force, the guide rails and sliders may deviate from their original fixed positions, affecting accuracy. To prevent such situations, it is recommended to use the four fixing methods listed in the following figure to fix the guide rails and sliders, ensuring the operating accuracy of the machine.



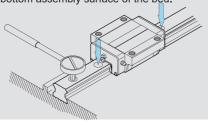

#### (2)Guide rail installation


1 Clean the dirt off the assembly surface of the bedplate.



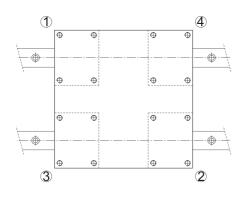

2 Place the linear guide smoothly on the bed table and let the reference surface on the side of the guide rest against the assembly surface of the bed table.




3 Test-fit the assembly screws to confirm that the bolt holes match, and roughly fix the bottom reference surface of the guide rail to the bottom assembly surface of the bed.



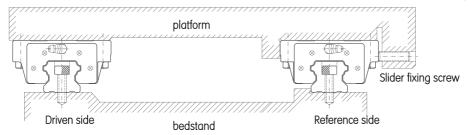
4 Use the lateral fixing screws to press the reference surface on the side of the guide rail against the assembly surface on the side of the bed in sequence to determine the position of the guide rail



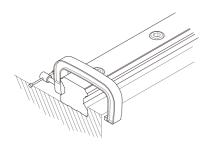

5 Use a torque wrench to tighten the assembly screws in sequence with a specific torque, pressing the bottom reference surface of the guide rail tightly against the bottom assembly surface of the bed.



6 Install the remaining paired guide rails according to steps 1 to 5.


#### (3)Slider installation

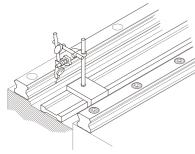



- Fix the bearing platform roughly onto the slider using assembly screws.
- O Use the fixed screws to firmly attach the reference surface on the side of the slider to the assembly surface on the side of the platform to determine the position of the slider.
- Tighten the assembly screws to secure the bearing platform onto the slider in the diagonal sequence of 1 to 4.

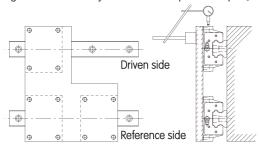
#### 1-11-3Installation of guide rails without lateral fixing screws

In the installation example without fixed screws, to ensure the parallelism between the driven side guide rail and the reference side guide rail, the guide rails can be installed as shown below, while the installation of the sliders is the same as in the aforementioned example.



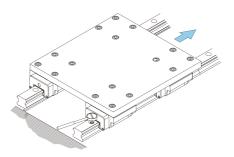

#### (1)Installation of the reference side guide rail



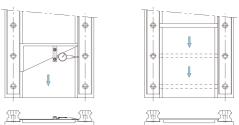

#### Clamping method with a vise

First, roughly fix the bottom reference surface of the guide rail to the bottom assembly surface of the bed using assembly screws. Then, use a vise to tightly press the side reference surface of the guide rail against the side assembly surface of the bed to determine the position of the guide rail. After that, use a torque wrench to lock the fixing screws in sequence with a certain torque, and tightly press the bottom reference surface of the guide rail against the bottom assembly surface of the bed.

#### (2)Installation of the driven side guide rail




O Straight-line block gauge method
Place the straight block gauge between the two guide rails, and
use a dial indicator to calibrate the straight block gauge to be
parallel to the side reference surface of the reference side guide
rail. Then, calibrate the driven side guide rail based on the straight
block gauge, starting from one end of the guide rail and sequentially
tighten the assembly screws with a specific torque.




Mobile platform method

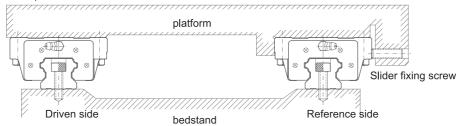
Fix the two sliders on the reference side on a measuring platform, while only install one slider on the driven side. Neither the guide rails nor the sliders on the bed and platform have been fastened yet. Use a dial indicator attached to the top surface of the slider on the driven side to measure the side reference surface of the slider on the driven side. Start calibrating from one end of the guide rail and lock the assembly screws in sequence with a specific torque.



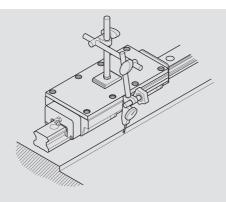
O The method of imitating the reference side guide rail
Fix the two sliders of the reference side linear guide and one
slider of the driven side linear guide to the platform. Then,
roughly fix the driven side guide rail and its other slider to
the bed and the platform respectively. Move the platform
based on the reference side guide rail, starting from one
end of the guide rail. While confirming the rolling resistance
of the driven side linear guide rail, sequentially tighten the
assembly screws with a specific torque.



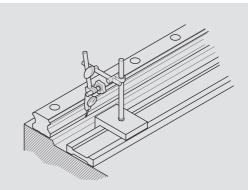
Reference side(a) Driven side


Reference side (b) Driven side

Professional tool method


Use a dedicated tool to determine the position of the driven side guide rail and then lock the assembly screws in sequence with a specific torque.

#### 1-11-4Installation of guide rails without lateral positioning mounting surfaces


In the installation example without lateral positioning assembly surfaces, to ensure the parallelism between the driven side guide rail and the reference side guide rail, the guide rails can be installed as shown below, while the installation of the sliders is the same as in the aforementioned examples.



#### (1)Installation of the reference side guide rail



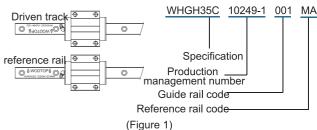
• False datum plane method Two sliders are tightly joined and fixed to the measurement plate. According to the reference surface near the guide rail, the side reference surface of the guide rail on the reference side is calibrated with a dial indicator. Calibration starts from one end of the guide rail and the assembly screws are tightened in sequence with a specific torque.

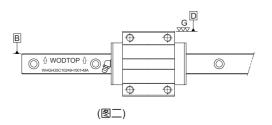


O Straight-line block gauge method Calibrate the side reference surface of the reference side guide rail using a dial indicator and a straight block gauge, starting from one end of the guide rail. Then, lock the assembly screws in sequence with a specific torque.

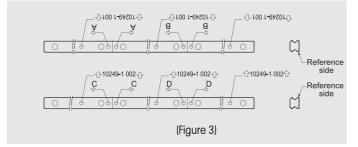
#### (2)Installation of the driven side guide rail

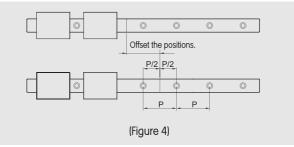
It is the same as the method listed in the example of installation without lateral fixing screws.


#### 1-11-5Installation Precautions for Linear Guide Rails

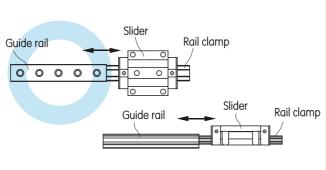

1.Before shipment, all linear guide products are coated with an appropriate amount of anti-rust oil. Before installation and use, please wipe off the anti-rust oil on the guide rail first, and then move the slider.

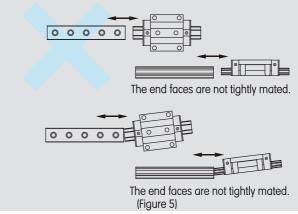
2.Confirm the reference rail and the driven rail:


When non-interchangeable linear guides are used in pairs, it is necessary to pay attention to the differences between the reference rail and the driven rail. The precision of the reference surface on the side of the reference rail is higher than that of the driven rail, and it can be used as the installation support surface of the bed. There is a mark of "MA" on the reference rail. Moreover, when two rails are used in pairs, the reference rail is numbered as an odd number, while the driven rail is numbered as an even number. Please install them in sequence according to the symbol indication (for example: 001 and 002 in pairs, 003 and 004 in pairs...), as shown in Figure 1. If multiple rails are installed, please follow this analogy.


3.Confirm the installation reference plane: The reference plane of the guide rail is the side (B) indicated by the arrow next to the "WODTOP" marking; while the reference plane of the slider is the smooth surface (D) that has been ground. (As shown in Figure 2)







4. Rail coupling parts: When installing the rail couplings, they must be installed in the order indicated on the rail to ensure the accuracy of the linear guide. The coupling marks are on the upper surface of the coupling end. Please join the two ends with the same coupling marks together, as shown in Figure 3. It is also recommended that the positions of the paired rail couplings be staggered to avoid accuracy problems at the coupling point due to differences in the rails, as shown in Figure 4.





5. When installing linear guides, do not remove the sliders unless necessary. If it is necessary to remove or install the sliders from the guide rails, please use the attached rail clamps (usage method as shown in Figure 5).





- 6. When installing linear guides, do not interchange the sliders of non-interchangeable types, as this may affect accuracy.
- 7.When installing linear guides, please use a torque wrench and tighten the bolts in sequence according to the recommended torque provided by our company to ensure the straightness of the guide rail.

#### 1-11-6Precautions for the Maintenance of Linear Guide Rails

- 1.The standard products of linear guides have been filled with high-quality lubricants (lubricating oil or soap-based grease) in the sliders before shipment. After installation and trial operation but before formal operation, please lubricate the sliders again. When lubricating, please use the same type of soap-based lubricant.
- 2. The standard products of linear guides are coated with anti-rust oil around the surface before shipment. If the guide rails are cleaned during installation, please apply a layer of appropriate lubricating oil around the surface of the guide rails again when the machine equipment is fully installed (please use compatible lubricants).
- 3.Since the slider of the linear guide is composed of many plastic parts, please avoid contact or immersion with organic solvents when cleaning to prevent product damage.
- 4. Foreign objects entering the slider is one of the causes of slider failure and damage, and should be avoided.
- 5.Disassembling the components of the linear guide rail at will may cause foreign objects to enter the slider or reduce the accuracy of the linear guide rail. Do not disassemble the linear guide rail at will.
- 6.Improperly inclined linear guides may cause the slider to slide out of the guide due to its own weight. Please keep the linear guide in a horizontal position when moving it.
- 7.Dropping or colliding with the linear guide may damage its normal function. Please avoid causing improper dropping or collision to the linear guide.
- 8. For use in special environments, please apply appropriate surface treatment or contact WODTOP.
- 9.The allowable ambient temperature range for self-lubricating linear guides (E2 type) is -10°C to 50°C; while for linear guides with metal end caps (SE type), the maximum allowable ambient temperature is 150°C. In addition, the maximum allowable ambient temperature for general linear guides is 100°C.
- 10. For other detailed explanations, please refer to the technical catalog. If you have any other questions or problems in use, please contact WODTOP.

#### **Product series**

To serve customers and meet their diverse product demands, in addition to the WHG series that is applicable to the general machine tool industry, we have also developed the WEG series, which is more suitable for the automation industry, as well as the WGN/WGM series, which are suitable for the micro-mechanical semiconductor industry.

#### (1)Series type

Table 7 Series Type Summary Table

| Series C | Combined height  | Load type      | Square-shaped | Flange type   |                 |                           |
|----------|------------------|----------------|---------------|---------------|-----------------|---------------------------|
| Selles   | Combined neight  | Load type      | Lockable type | Lockable type | Locking type To | p and bottom locking type |
|          | Tall type        | Heavy load     | WHGH-CA       | -             | -               | -                         |
| WHG      | raii type        | Excessive load | WHGH-HA       | -             | -               | -                         |
| WIIO     | Low profile type | Heavy load     | WHGL-CA       | WHGW-CA       | WHGW-CB         | WHGW-CC                   |
|          | Low-profile type | Excessive load | WHGL-HA       | WHGW-HA       | WHGW-HB         | WHGW-HC                   |
| WEG      | Low-profile type | Medium load    | WEGH-SA       | WEGW-SA       | WEGW-SB         | -                         |
| VVLO     | Low-prome type   | Heavy load     | WEGH-CA       | WEGW-CA       | WEGW-CB         | -                         |
| WGN      |                  | Standard type  | WGN-S         | -             | -               | -                         |
| WGN      | -                | Extended type  | WGN-H         | -             | -               | -                         |
| WGW      | _                | Standard type  | WGW-S         | -             | -               | -                         |
| VVGVV    |                  | Extended type  | WGW-H         | -             | -               | -                         |

#### (2)Series accuracy grades

Table 8 Series Type Summary Table

|        | Non-intercha    | angeable linear | guide rails                                  |                         |                      | Interchangeat   | le linear guide | rails            |
|--------|-----------------|-----------------|----------------------------------------------|-------------------------|----------------------|-----------------|-----------------|------------------|
| Series | Ordinary<br>(C) | Tall<br>(H)     | Interchangeable<br>linear guide rails<br>(P) | ultra-precisior<br>(SP) | ultra-precision (UP) | Ordinary<br>(C) | Tall<br>(H)     | Precision<br>(P) |
| WHG    | •               | •               | •                                            | •                       | •                    | •               | •               | •                |
| WEG    | •               | •               | •                                            | •                       | •                    | •               | •               | •                |
| WGN    | •               | •               | •                                            | -                       | -                    | •               | •               | •                |
| WGW    | •               | •               | •                                            | -                       | -                    | •               | •               | •                |

#### (3)Series accuracy grades

Table 9 Series Pre-press Level Master Table

|        | Non-interchangeable   | linear guide rails    | Interchangeable linear guide rails |                             |                                    |
|--------|-----------------------|-----------------------|------------------------------------|-----------------------------|------------------------------------|
| Series | Common clearance (Z0) | Light preloading (ZA) | Pre-compression in the middle(ZB)  | Light preloading (Z0)       | Light preloading (ZA)              |
| WHG    | •                     | •                     | •                                  | •                           | •                                  |
| WEG    | •                     | •                     | •                                  | •                           | •                                  |
|        |                       |                       |                                    |                             |                                    |
|        | Non-interchangeable   | linear guide rails    |                                    | Interchangeable lin         | near guide rails                   |
| Series | Common clearance (Z0) | Light preloading (ZA) | Pre-compression in the middle(ZB)  | Common No clearance(ZF) (Z0 | preloading Light preloading ) (Z1) |
| WHG    | •                     | •                     | •                                  | •                           | •                                  |
| WEG    | •                     | •                     | •                                  | •                           | •                                  |

#### (4) Various mechanical application accuracy grades

| Purpose           |                                        | Axial position | Precision grade |   |   |    |    |
|-------------------|----------------------------------------|----------------|-----------------|---|---|----|----|
|                   | Fulpose                                | Axidi position | С               | Н | Р | SP | UP |
|                   | lathe                                  | X              |                 |   | • | •  | •  |
|                   | idille                                 | Z              |                 |   | • | •  |    |
|                   |                                        | Χ              |                 |   |   | •  | •  |
|                   | Milling machine, boring machine        | Υ              |                 |   | • | •  |    |
| _                 |                                        | Z              |                 |   | • | •  |    |
|                   |                                        | X              |                 |   | • | •  | •  |
|                   | Integrated processing machine          | Y              |                 |   | • | •  | •  |
|                   |                                        | Z              |                 |   | • | •  |    |
| CNC machine tools | The Property Research to               | X              |                 |   |   |    |    |
| 3                 | Tooling grinding machine               | Y              |                 |   |   |    |    |
| lach              |                                        | Z<br>X         |                 |   |   |    |    |
| nine              | Drilling machine                       | Y              |                 |   |   |    |    |
| toc               | Brilling machine                       | Z              |                 |   |   |    |    |
| Sis               |                                        | X              |                 |   |   | •  | •  |
|                   | Grinding machine                       | Y              |                 |   | • |    |    |
|                   |                                        | X              |                 |   | • | •  |    |
|                   | Electrical discharge machining machine | Y              |                 |   | • | •  |    |
|                   | Electrical discrining macriming        | Z              |                 |   | • |    |    |
|                   | Wire cutting machine                   | X              |                 |   |   | •  |    |
|                   |                                        | Υ              |                 |   |   | •  |    |
|                   |                                        | U              |                 |   | • | •  |    |
|                   |                                        | V              |                 |   | • | •  |    |
|                   |                                        | X              |                 |   | • |    |    |
|                   | Laser processing machine               | Υ              |                 |   | • |    |    |
|                   |                                        |                |                 |   | • |    |    |
|                   | High-speed punch press                 | X              |                 | • | • |    |    |
|                   |                                        | Υ              |                 | • | • |    |    |
|                   | Special-purpose machine                |                |                 | • | • | •  |    |
|                   | Woodworking machine                    |                | •               | • |   |    |    |
|                   | Precision mechanical arm               |                |                 |   | • | •  |    |
|                   | Mechanical Arm (General Grade)         |                | •               | • | • |    |    |
| General machine   | Three-dimensional measuring machine    |                |                 |   |   | •  | •  |
| era               | Traditional machinery                  |                |                 |   | • |    |    |
| 3                 | Conveyor system                        |                | •               | • | • |    |    |
| ach               | X-Y table                              |                |                 |   | • | •  | •  |
| line              | Linear actuator                        |                | •               | • | • |    |    |
| ÿ                 | Aerospace load gears                   |                |                 | • | • |    |    |
|                   | Wing surface controller                |                | _               | • | • |    |    |
|                   | valve                                  |                | •               | • |   |    |    |
|                   | Power steering gear                    |                |                 | • | _ |    |    |
|                   | Glass grinding machine                 |                |                 |   |   |    |    |
|                   | Surface grinding machine               |                |                 |   |   |    |    |
|                   | Induction heat treatment               |                | •               |   |   |    |    |
|                   | Semiconductor equipment                |                |                 |   |   |    |    |
|                   | All-electric injection molding machine |                | •               | • |   |    |    |

### Heavy load type ball linear guide rail

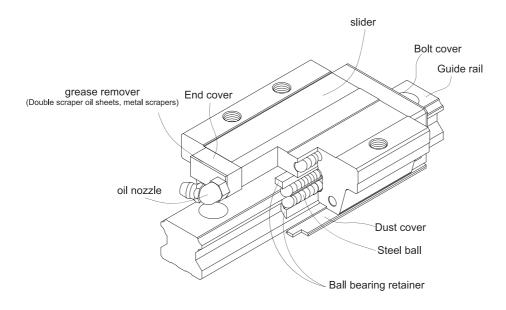
#### WHG series

The WHG series linear guide rails are four-row single arc tooth contact linear guide rails, which integrate the optimized structural design of ultra-heavy load precision linear guide rails. Compared to other linear guide rails, they enhance load and rigidity capabilities; they feature four-direction equal load characteristics and automatic self-alignment functionality, allowing them to absorb assembly errors from the installation surface, thus achieving high precision requirements. The concepts of high precision, high load, high rigidity, and precision have become the trend in the development of industrial products worldwide. The WODTOP four-row ultra-heavy load linear guide rail is a product developed based on this concept.

#### 1. Features of WHG series linear guides

#### (1)Automatic self-aligning capability

The DF [45°-45°] combination from the arc groove absorbs the deviations during installation through the elastic deformation of the rigid beads and the transfer of contact points. This allows for automatic self-alignment capabilities, resulting in high precision and stable smooth movement, even if there are some deviations in the installation surface.


#### (2)Interchangeable

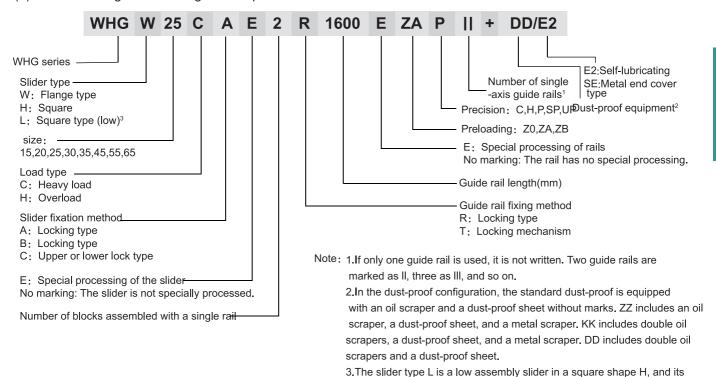
Due to strict control over production manufacturing precision, the dimensions of the linear guide rails can be maintained at a certain level, and the design of the slider includes a retainer to prevent the steel balls from falling out. Therefore, some series have interchangeable precision, allowing customers to purchase guide rails or sliders as needed, and also to store the guide rails and sliders separately to reduce storage space.

(3)All directions have high rigidity.

By using a four-column arc groove and a 45-degree contact angle with four rows of steel balls, the steel balls achieve an ideal two-point contact structure, capable of withstanding loads from both vertical and horizontal directions; if necessary, pre-pressure can be applied to increase rigidity.

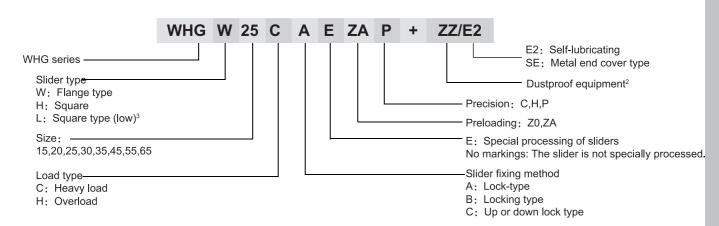
#### 2. WHG Ontology structure



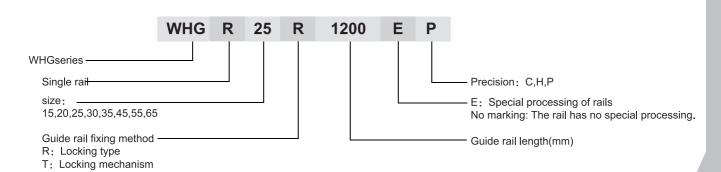

- O Rolling loop system: slider, guide rail, end cap, steel balls, steel ball retainer
- O Lubrication system: oil nozzle, oil pipe joint
- O Dust protection system: oil scraper, bottom sealing dust cover, guide rail bolt cover, metal scraper

#### 3. Product Specification Description

The WHG series is divided into two types of linear guide rails: non-interchangeable and interchangeable. Both have the same specifications and dimensions, but the main difference is that the sliding blocks and rails of the interchangeable type can be used interchangeably, making it more convenient. However, the assembly accuracy of the interchangeable type cannot reach the ultra-high precision of the non-interchangeable type. Nonetheless, due to WODTOP's excellent dimensional control and strict quality requirements in manufacturing, the assembly accuracy of the interchangeable type has currently reached a certain level. For customers who do not require paired installation of linear guide rails, this is a great choice. The product specifications and model numbers of linear guide rails primarily indicate the dimensions, types, accuracy levels, pre-pressure, and other specifications required, to facilitate confirmation of the product by both parties when ordering.


combination height is consistent with that of the flange type of the same size.

#### (1)Non-interchangeable linear guide rail product model




#### (2)Interchangeable linear guide rail product models

O Interchangeable slider product model



#### O Interchangeable rail product model



#### 4. WHG series type

#### (1)Slider type

WODTOP offers two types of linear guides: flange type and square type. The square type linear guides are divided into H-type and L-type, with the L-type being a low-assembly linear guide of the H-type. Its combined height is consistent with that of the flange type linear guide.

Table 1–1 Slider Type

| Model       | Specification      | shape | Height dimensions (mm) | Guide<br>rail length<br>(mm) | Application device                                                                                                                                                                  |
|-------------|--------------------|-------|------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Square      | WHGH-CA<br>WHGH-HA |       | 28<br>↓<br>90          |                              | <ul> <li>Machining Center</li> <li>Machine tool</li> <li>Precision machining machine</li> <li>Heavy cutting machine tool</li> <li>Marble cutting machine</li> </ul>                 |
|             | WHGL-CA<br>WHGL-HA |       | 24<br>↓<br>70          | 100                          | <ul> <li>grinder</li> <li>Injection molding machine</li> <li>Punching machine</li> <li>automation device</li> <li>transportation equipment</li> <li>Measuring instrument</li> </ul> |
|             | WHGW-CA<br>WHGW-HA |       | 24<br>↓<br>90          | 100<br>↓<br>4000             |                                                                                                                                                                                     |
| Flange type | WHGW-CB<br>WHGW-HB |       | 24<br>↓<br>90          | 100<br>↓<br>4000             |                                                                                                                                                                                     |
|             | WHGW-CC<br>WHGW-HC |       | 24<br>↓<br>90          | 100<br>↓<br>4000             |                                                                                                                                                                                     |

#### WHG series

# Heavy load type ball linear guide rail

#### (2)Guide rail type

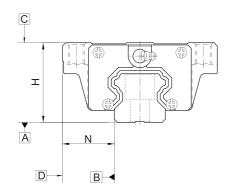

In addition to the standard lock-type bolt hole guide rails, WODTOP also offers under-lock screw hole guide rails for the convenience of customer installation and use.

Table 1-2 Guide Type



#### 5. WHG series accuracy levels

The accuracy of the WHG series linear guide rails is divide d into five levels: ordinary, high, precision, ultra-precision, and ultra-high precision. Customers can choose the accuracy according to the precision requirements of their equipment.



#### (1)Non-interchangeable linear guide rail precision

Table 1–3 Assembly Precision Table

Unit: mm

| Model                                                                     | <b>WHG</b> -15,20                    |                 |                        |                               |                                |
|---------------------------------------------------------------------------|--------------------------------------|-----------------|------------------------|-------------------------------|--------------------------------|
| Accuracy level                                                            | Regular level<br>(C)                 | Advanced<br>(H) | Precision level<br>(P) | Ultra Precision<br>LevelC(SP) | Ultra high precision grade(UP) |
| Allowable size error of height H                                          | ±0.1                                 | ±0.03           | 0<br>-0.03             | 0<br>-0.015                   | 0<br>-0.008                    |
| Permissible dimensional tolerance of width N                              | ±0.1                                 | ±0.03           | 0<br>-0.03             | 0<br>-0.015                   | 0<br>-0.008                    |
| Mutual error of paired height H                                           | 0.02                                 | 0.01            | 0.006                  | 0.004                         | 0.003                          |
| Mutual errors of paired width N                                           | 0.02                                 | 0.01            | 0.006                  | 0.004                         | 0.003                          |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 1-11) |                 |                        |                               |                                |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (see Table 1-11) |                 |                        |                               |                                |

#### Table 1-4 Assembly Precision Table

Unit: mm

| Table 1-7733611biy i Tedision Table                                       |                                           |                 |                        |                               | Offic, Illin                   |
|---------------------------------------------------------------------------|-------------------------------------------|-----------------|------------------------|-------------------------------|--------------------------------|
| Model                                                                     | <b>WHG</b> -25,30,35                      | ;               |                        |                               |                                |
| Accuracy level                                                            | Regular level<br>(C)                      | Advanced<br>(H) | Precision level<br>(P) | Ultra Precision<br>LevelC(SP) | Ultra high precision grade(UP) |
| Permissible dimensional tolerance of height H                             | ±0.1                                      | ±0.04           | 0<br>-0.04             | 0<br>-0.02                    | 0<br>-0.01                     |
| Permissible size tolerance of width N                                     | ±0.1                                      | ±0.04           | 0<br>-0.04             | 0<br>-0.02                    | 0<br>-0.01                     |
| Mutual error of paired height H                                           | 0.02                                      | 0.015           | 0.007                  | 0.005                         | 0.003                          |
| Mutual errors of paired width N                                           | 0.03                                      | 0.015           | 0.007                  | 0.005                         | 0.003                          |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 1-11)      |                 |                        |                               |                                |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (refer to Table 1-11) |                 |                        |                               |                                |

# Heavy load type ball linear guide rail

#### WHG series

| Table 1-5 Ass | sembly Pre | cision Table |
|---------------|------------|--------------|
|---------------|------------|--------------|

|     | m |  |
|-----|---|--|
| Jni |   |  |
|     |   |  |

| Model                                                                     | <b>WHG</b> -45,55                         |                 |                        |                               |                                |
|---------------------------------------------------------------------------|-------------------------------------------|-----------------|------------------------|-------------------------------|--------------------------------|
| Accuracy level                                                            | Regular level<br>(C)                      | Advanced<br>(H) | Precision level<br>(P) | Ultra Precision<br>LevelC(SP) | Ultra high precision grade(UP) |
| Permissible dimensional tolerance of height H                             | ±0.1                                      | ±0.05           | 0<br>-0.05             | 0<br>-0.03                    | 0<br>-0.02                     |
| Permissible size tolerance of width N                                     | ±0.1                                      | ±0.05           | 0<br>-0.05             | 0<br>-0.03                    | 0<br>-0.02                     |
| Mutual error of paired height H                                           | 0.03                                      | 0.015           | 0.007                  | 0.005                         | 0.003                          |
| Mutual errors of paired width N                                           | 0.03                                      | 0.02            | 0.01                   | 0.007                         | 0.005                          |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 1-11)      |                 |                        |                               |                                |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (refer to Table 1-11) |                 |                        |                               |                                |

#### Table 1-6 Assembly Precision TableC

Unit: mm

| ,                                                                         |                                           |                 |                        |                               | •                              |
|---------------------------------------------------------------------------|-------------------------------------------|-----------------|------------------------|-------------------------------|--------------------------------|
| Model                                                                     | <b>WHG</b> -65                            |                 |                        |                               |                                |
| Accuracy level                                                            | Regular level<br>(C)                      | Advanced<br>(H) | Precision level<br>(P) | Ultra Precision<br>LevelC(SP) | Ultra high precision grade(UP) |
| Permissible dimensional tolerance of height H                             | ±0.1                                      | ±0.07           | 0<br>-0.07             | 0<br>-0.05                    | 0<br>-0.03                     |
| Permissible size tolerance of width N                                     | ±0.1                                      | ±0.07           | 0<br>-0.07             | 0<br>-0.05                    | 0<br>-0.03                     |
| Mutual error of paired height H                                           | 0.03                                      | 0.02            | 0.01                   | 0.007                         | 0.005                          |
| Mutual errors of paired width N                                           | 0.03                                      | 0.025           | 0.015                  | 0.01                          | 0.007                          |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 1-11)      |                 |                        |                               |                                |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (refer to Table 1-11) |                 |                        |                               |                                |

#### (2)Interchangeable linear guide rail accuracy

#### Table 1-7 Single Item Precision Table

Unit: mm

| Model                                                                     | <b>WHG</b> -15,20                         |                 |                        |  |  |
|---------------------------------------------------------------------------|-------------------------------------------|-----------------|------------------------|--|--|
| Accuracy level                                                            | Regular level<br>(C)                      | Advanced<br>(H) | Precision level<br>(P) |  |  |
| Permissible dimensional tolerance of height H                             | ±0.1                                      | ±0.03           | ±0.015                 |  |  |
| Permissible size tolerance of width N                                     | ±0.1                                      | ±0.03           | ±0.015                 |  |  |
| Mutual error of paired height H                                           | 0.02                                      | 0.01            | 0.006                  |  |  |
| Mutual errors of paired width N                                           | 0.02                                      | 0.01            | 0.006                  |  |  |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 1-11)      |                 |                        |  |  |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (refer to Table 1-11) |                 |                        |  |  |

#### Table 1-8 Single Item Precision Table

Unit: mm

| Model                                                                     | <b>WHG</b> -25,30,35                      |                 |                        |  |  |
|---------------------------------------------------------------------------|-------------------------------------------|-----------------|------------------------|--|--|
| Accuracy level                                                            | Regular level<br>(C)                      | Advanced<br>(H) | Precision level<br>(P) |  |  |
| Permissible dimensional tolerance of height H                             | ±0.1                                      | ±0.04           | ±0.02                  |  |  |
| Permissible size tolerance of width N                                     | ±0.1                                      | ±0.04           | ±0.02                  |  |  |
| Mutual error of paired height H                                           | 0.02                                      | 0.015           | 0.007                  |  |  |
| Mutual errors of paired width N                                           | 0.03                                      | 0.015           | 0.007                  |  |  |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 1-11)      |                 |                        |  |  |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (refer to Table 1-11) |                 |                        |  |  |

#### WHG series

# Heavy load type ball linear guide rail

Table 1-9 Single Piece Accuracy Table

Unit: mm

| Model                                                                     | <b>WHG</b> -45,55                         |                 |                        |
|---------------------------------------------------------------------------|-------------------------------------------|-----------------|------------------------|
| Accuracy level                                                            | Regular level<br>(C)                      | Advanced<br>(H) | Precision level<br>(P) |
| Permissible dimensional tolerance of height H                             | ±0.1                                      | ±0.05           | ±0.025                 |
| Permissible size tolerance of width N                                     | ±0.1                                      | ±0.05           | ±0.025                 |
| Mutual error of paired height H                                           | 0.03                                      | 0.015           | 0.007                  |
| Mutual errors of paired width N                                           | 0.03                                      | 0.02            | 0.01                   |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 1-11)      |                 |                        |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (refer to Table 1-11) |                 |                        |

Table 1-10 Single Piece Accuracy Table

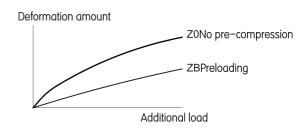
Unit: mm

| Model                                                                     | <b>WHG</b> -65                            |                 |                     |
|---------------------------------------------------------------------------|-------------------------------------------|-----------------|---------------------|
| Accuracy level                                                            | Regular level<br>(C)                      | Advanced<br>(H) | Precision level (P) |
| Permissible dimensional tolerance of height H                             | ±0.1                                      | ±0.07           | ±0.035              |
| Permissible size tolerance of width N                                     | ±0.1                                      | ±0.07           | ±0.035              |
| Mutual error of paired height H                                           | 0.03                                      | 0.02            | 0.01                |
| Mutual errors of paired width N                                           | 0.03                                      | 0.025           | 0.015               |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 1-11)      |                 |                     |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (refer to Table 1-11) |                 |                     |

#### (3)Walking parallelism accuracy

Table 1-11 Walking Parallelism Precision Table

| Guide rail length(mm) | Accuracy level(µm | n) |    |    |    |
|-----------------------|-------------------|----|----|----|----|
|                       | С                 | Н  | Р  | SP | UP |
| ~ 100                 | 12                | 7  | 3  | 2  | 2  |
| 100~ 200              | 14                | 9  | 4  | 2  | 2  |
| 200~ 300              | 15                | 10 | 5  | 3  | 2  |
| 300~ 500              | 17                | 12 | 6  | 3  | 2  |
| 500~ 700              | 20                | 13 | 7  | 4  | 2  |
| 700~ 900              | 22                | 15 | 8  | 5  | 3  |
| 900~ 1,100            | 24                | 16 | 9  | 6  | 3  |
| 1,100~ 1,500          | 26                | 18 | 11 | 7  | 4  |
| 1,500~ 1,900          | 28                | 20 | 13 | 8  | 4  |
| 1,900~ 2,500          | 31                | 22 | 15 | 10 | 5  |
| 2,500~ 3,100          | 33                | 25 | 18 | 11 | 6  |
| 3,100~ 3,600          | 36                | 27 | 20 | 14 | 7  |
| 3,600~ 4,000          | 37                | 28 | 21 | 15 | 7  |


# Heavy load type ball linear guide rail

#### WHG series

#### 6. pre-stress

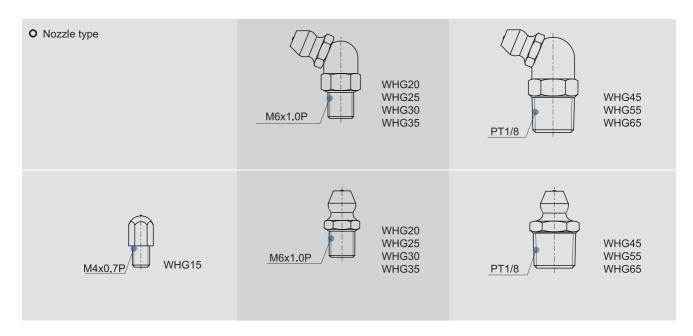
#### (1)Definition of pre-stress

Pre-load is the force applied to the steel balls in advance, which means increasing the diameter of the steel balls and applying pre-load through the negative clearance between the steel balls and the rail. This action can improve the rigidity of the linear guide and eliminate gaps; as explained in the diagram to the right, increasing the pre-load can enhance the rigidity of the linear guide. However, for smaller specifications, it is recommended to use light pre-load to avoid reducing its service life due to excessive pre-load.



#### (2)Preloading Level

The WHG series linear guides offer three standard preloads, allowing you to choose the appropriate preload based on the application.


Table 1–12 Pre-compression Level

| Preloading<br>Level | mark      | pre-stress       | Terms of use                                                                         | Scope of use                                                                                                                                                                                                                                                        |
|---------------------|-----------|------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No pre-pressure     | Z0        | 0~0.02C          | The load direction is fixed and the impact is small, with low accuracy requirements. | Conveying devices, automatic packaging machines, automated industrial machinery, general industrial machinery's XY axis, welding machines, fusing machines, tool exchanging devices.                                                                                |
| Preloading          | ZA        | 0.05C~0.07C      | Light load and high precision requirements                                           | General industrial machinery Z-axis, electric discharge machine,<br>NC lathe, precision XY platform, measuring device, machining center,<br>vertical machining center, industrial robots, automatic coating machine,<br>various high-speed material supply devices. |
| Heavy<br>Preloading | ZB        | 0.10C~0.12C      | Rigid requirements,<br>and under conditions<br>of vibration and impact.              | Machining center, grinding machine, NC lathe, vertical or horizontal milling machine, Z-axis of the machine tool, heavy cutting processing machine                                                                                                                  |
| Level               | Interchar | ngeable linear r | ail (single output part)                                                             | Non-interchangeable rail track (assembly)                                                                                                                                                                                                                           |
| Preloading Level    | Z0,ZA     |                  |                                                                                      | Z0,ZA,ZB                                                                                                                                                                                                                                                            |

Non-interchangeable rail track (assembly)

#### 7, Lubrication method

#### (1)Lubricating grease



#### Oil nozzle position

According to customer needs, a grease fitting can be installed at the front or rear end of the slider for manual greasing. The WHG series particularly reserves a side oil hole position on the side of the end cap for installing the grease fitting (usually a straight grease fitting) to provide lateral greasing. It is recommended that the lateral greasing position be on the non-side reference edge, but if there are special requirements, it can also be placed on the side reference edge. If customers have such lateral greasing needs, please contact us. For linear guides that automatically supply lubricating grease using a connecting pipe, the type of connecting pipe can be used to select the appropriate oil pipe joint.

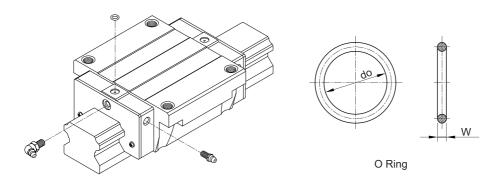
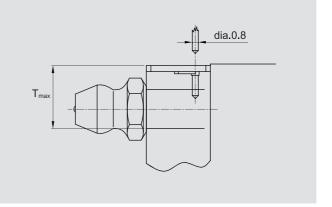




Table 1–13 O–Ring Specifications and Maximum Allowable Hole Depth

| Specification | O-Ring Specific | Maximum allowable |                                         |
|---------------|-----------------|-------------------|-----------------------------------------|
| Opecification | do(mm)          | W(mm)             | perforation depth T <sub>max</sub> (mm) |
| WHG15         | 2.5±0.15        | 1.5±0.15          | 3.75                                    |
| WHG20         | 4.5±0.15        | 1.5±0.15          | 5.7                                     |
| WHG25         | 4.5±0.15        | 1.5±0.15          | 5.8                                     |
| WHG30         | 4.5±0.15        | 1.5±0.15          | 6.3                                     |
| WHG35         | 4.5±0.15        | 1.5±0.15          | 8.8                                     |
| WHG45         | 4.5±0.15        | 1.5±0.15          | 8.2                                     |
| WHG55         | 4.5±0.15        | 1.5±0.15          | 11.8                                    |
| WHG65         | 4.5±0.15        | 1.5±0.15          | 10.8                                    |



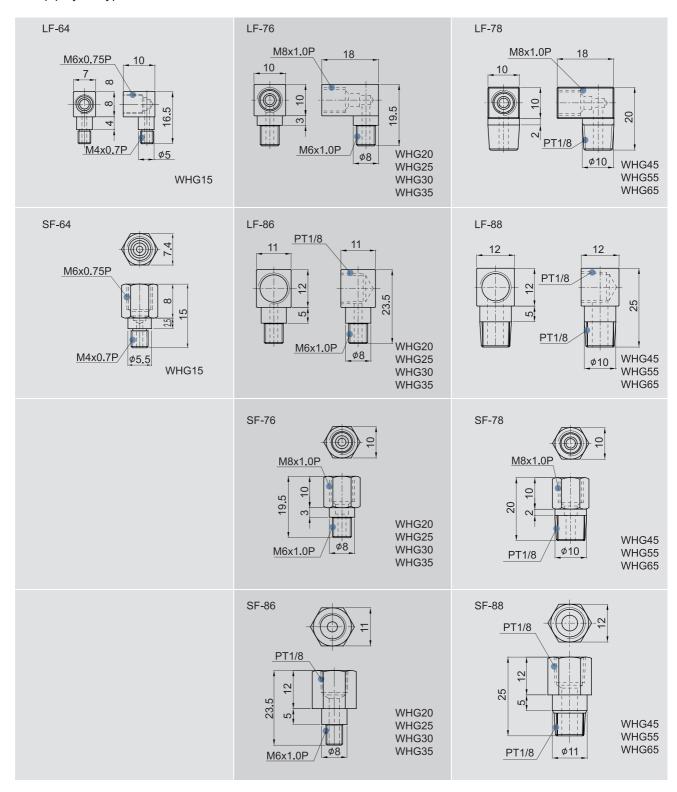
#### oThe single slider is filled with lubricant grease.

Table 1-14 Volume of lubricant grease for a single slider

| Specification | Heavy load<br>(cm³) | Overload<br>(cm³) | Specification | Heavy load<br>(cm³) | Overload<br>(cm³) |
|---------------|---------------------|-------------------|---------------|---------------------|-------------------|
| WHG15         | 1                   | -                 | WHG35         | 10                  | 12                |
| WHG20         | 2                   | 3                 | WHG45         | 17                  | 21                |
| WHG25         | 5                   | 6                 | WHG55         | 26                  | 33                |
| WHG30         | 7                   | 8                 | WHG65         | 50                  | 61                |

#### Lubrication frequency

Check the grease every 100 km or every 3-6 months.


# Heavy load type ball linear guide rail

#### WHG series

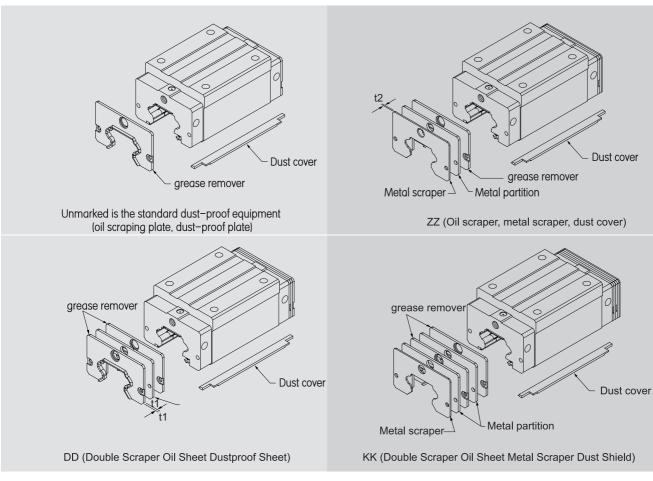
#### (2)Lubricating oil

It is recommended to use lubricant with a viscosity of about 30~150 cSt to lubricate linear guides. Customers can inform us if they need oil lubrication, and the linear guides will not be filled with grease before shipment.

#### Oil pipe joint type



#### oFuel supply rate


Table 1-15 Fuel Supply Rate

| Specification | Fuel supply rate (cm³/hr) | Specification | Fuel supply rate (cm³/hr) |
|---------------|---------------------------|---------------|---------------------------|
| WHG15         | 0.2                       | WHG35         | 0.3                       |
| WHG20         | 0.2                       | WHG45         | 0.4                       |
| WHG25         | 0.3                       | WHG55         | 0.5                       |
| WHG30         | 0.3                       | WHG65         | 0.6                       |

#### 8. Dust-proof equipment

#### (1)Standard dustproof equipment code

Generally used in work environments without special requirements. If there is a need for the following dust-proof accessories, please add the code after the product model.



Note: WHG20/WHG25/WHG65 have no metal partition configuration.

# Heavy load type ball linear guide rail

#### WHG series

#### (2) Dustproof equipment instructions

 Oil scraper and bottom dust-proof strip
 Preventing processed metal shavings or dust particles from entering the slide block can damage the surface of the rail and reduce the lifespan of the linear guide.

Double-layer oil scraper

Double chip removal effect, even in heavy cutting environments, foreign objects are completely expelled outside the slider.

Table 1-16 Thickness of Oil Scraper Blade

| Specification | Increase thickness(t1) (mm) | Specification | Increase thickness(t1) (mm) |
|---------------|-----------------------------|---------------|-----------------------------|
| WHG15 ES      | 3                           | WHG35 ES      | 3.2                         |
| WHG20 ES      | 3.5                         | WHG45 ES      | 4.5                         |
| WHG25 ES      | 3.5                         | WHG55 ES      | 4.5                         |
| WHG30 ES      | 3.2                         | WHG65 ES      | 6                           |

#### Metal scraper

Can isolate high-temperature iron filings or processing sparks, and eliminate large volume impurities.

Table 1-17 Metal Scraper Thickness

| Specification | Increase thickness (t2) (mm) | Specification | Increase thickness (t2) (mm) |
|---------------|------------------------------|---------------|------------------------------|
| WHG15 SC      | 1.5                          | WHG35 SC      | 1.5                          |
| WHG20 SC      | 1.5                          | WHG45 SC      | 1.5                          |
| WHG25 SC      | 1.5                          | WHG55 SC      | 1.5                          |
| WHG30 SC      | 1.5                          | WHG65 SC      | 1.5                          |

### WHG series

# Heavy load type ball linear guide rail

#### Rail bolt cover

To prevent cutting powder or foreign objects from entering the interior of the slide block through the bolt holes and affecting precision, the customer must insert the bolt caps into the bolt holes when installing the guide rails. Each guide rail is supplied with a bolt cap upon leaving the factory.

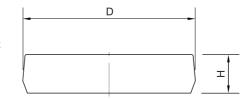



Table 1-18 Guide Rail Bolt Cover

| Rail specifications | Install the screws | Diameter (D) (mm) | Thickness (H) (mm) | Rail specifications | Install the screws | Diameter (D) (mm) | Thickness (H) (mm) |
|---------------------|--------------------|-------------------|--------------------|---------------------|--------------------|-------------------|--------------------|
| WHGR15              | M4                 | 7.65              | 1.1                | WHGR35              | M8                 | 14.20             | 3.5                |
| WHGR20              | M5                 | 9.65              | 2.5                | WHGR45              | M12                | 20.25             | 4.5                |
| WHGR25              | M6                 | 11.15             | 2.5                | WHGR55              | M14                | 23.25             | 5.0                |
| WHGR30              | M8                 | 14.20             | 3.5                | WHGR65              | M16                | 26.35             | 5.0                |

### (5)Total length of the dustproof slider code

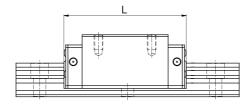



Table 1-19 Total Length of Slider

Unit: mm

| Specification | Total length of the slider(L | -)           |              |              |
|---------------|------------------------------|--------------|--------------|--------------|
| Specification | SS                           | ZZ           | DD           | KK           |
| WHG15C        | 61.4(61.8)                   | 69.0(69.4)   | 68.0(68.4)   | 75.6(76.0)   |
| WHG20C        | 77.5(79.3)                   | 82.5(84.5)   | 82.5(84.3)   | 87.5(89.5)   |
| WHG20H        | 92.2(94.0)                   | 97.2(99.2)   | 97.5(99.0)   | 102.2(104.2) |
| WHG25C        | 84.0(85.0)                   | 89.0(91.0)   | 89.0(90.0)   | 94.0(96.0)   |
| WHG25H        | 104.6(105.6)                 | 109.6(111.6) | 109.6(110.6) | 114.6(116.6) |
| WHG30C        | 97.4(99.4)                   | 105.4(107.4) | 104.8(106.8) | 112.8(110.8) |
| WHG30H        | 120.4(122.4)                 | 128.4(130.4) | 127.8(129.8) | 135.8(133.8) |
| WHG35C        | 112.4(114.4)                 | 120.4(124.4) | 119.8(121.8) | 127.8(129.8) |
| WHG35H        | 138.2(140.2)                 | 146.2(148.2) | 145.6(147.6) | 153.6(155.6) |
| WHG45C        | 139.4(139.4)                 | 150.0(150.0) | 149.4(149.4) | 160.0(160.0) |
| WHG45H        | 171.2(171.2)                 | 181.8(181.8) | 181.2(181.2) | 191.8(191.8) |
| WHG55C        | 166.7(166.7)                 | 177.1(177.1) | 177.1(177.1) | 187.5(187.5) |
| WHG55H        | 204.8(204.8)                 | 215.2(215.2) | 215.2(215.2) | 225.5(225.6) |
| WHG65C        | 200.2(200.2)                 | 208.2(208.2) | 209.2(209.2) | 217.2(217.2) |
| WHG65H        | 259.6(259.6)                 | 267.6(267.6) | 268.6(268.6) | 276.6(276.6) |

Note: 1. represents the maximum length of the slide block, including screws, oil scraper lip, etc.

### 9. Frictional force

This resistance value is the maximum resistance of a single oil scraping sheet...

Table 1-20 WHG series oil scraper resistance

| Specification | Oil scraper resistanceN(kgf) | Specification | Oil scraper resistanceN(kgf) |
|---------------|------------------------------|---------------|------------------------------|
| WHG15         | 1.18(0.12)                   | WHG35         | 3.04(0.31)                   |
| WHG20         | 1.57(0.16)                   | WHG45         | 3.83(0.39)                   |
| WHG25         | 1.96(0.2)                    | WHG55         | 4.61(0.47)                   |
| WHG30         | 2.65(0.27)                   | WHG65         | 5.79(0.59)                   |

Note: 1kgf=9.81N

## 10. Installation plane error

The WHG series is an arc two-point contact linear guide, and its auto-aligning feature can absorb slight errors in the installation surface without affecting the smoothness of linear motion. The allowable error values for the installation surface are indicated in the table below:

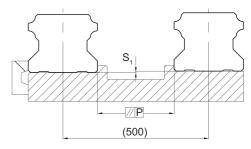
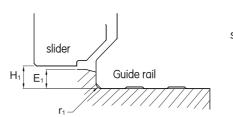



Table 1-21 Allowable Parallelism Tolerance (P)

Unit: mm

| Specification | Preloading   |              |              |
|---------------|--------------|--------------|--------------|
| Specification | Z0Preloading | ZAPreloading | ZBPreloading |
| WHG15         | 25           | 18           | 13           |
| WHG20         | 25           | 20           | 18           |
| WHG25         | 30           | 22           | 20           |
| WHG30         | 40           | 30           | 27           |
| WHG35         | 50           | 35           | 30           |
| WHG45         | 60           | 40           | 35           |
| WHG55         | 70           | 50           | 45           |
| WHG65         | 80           | 60           | 55           |

Table 1-21 Allowable vertical and horizontal level deviation (S<sub>1</sub>)


Unit: mm

| Specification | Preloading   |              |              |
|---------------|--------------|--------------|--------------|
| Specification | Z0Preloading | ZAPreloading | ZBPreloading |
| WHG15         | 130          | 85           | 35           |
| WHG20         | 130          | 85           | 50           |
| WHG25         | 130          | 85           | 70           |
| WHG30         | 170          | 110          | 90           |
| WHG35         | 210          | 150          | 120          |
| WHG45         | 250          | 170          | 140          |
| WHG55         | 300          | 210          | 170          |
| WHG65         | 350          | 250          | 200          |

Note: Allowable values are proportional to the distance between axes.

### 11. Installation Precautions

(1)Installation shoulder height and bevel When installing linear guides, it is crucial to pay attention to the condition of the mounting surface shoulder. If the chamfer is too large or there are protruding areas, it can easily lead to poor accuracy of the linear guide. If the height is too high, it will interfere with the slider. Therefore, if the recommended requirements for the shoulder of the mounting surface can be followed, poor installation accuracy can be eliminated.



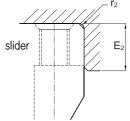



Table 1-23 Shoulder Height and Chamfer

| Specification | Maximum radius of the end of the guide rail r <sub>1</sub> (mm) | Maximum corner radius of the slider end r <sub>2</sub> (mm) | Rail end shoulder<br>height E₁(mm) | Slider endShoulder<br>height E <sub>2</sub> (mm) | Net height of the slider operation H <sub>1</sub> (mm) |
|---------------|-----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| WHG15         | 0.5                                                             | 0.5                                                         | 3.0                                | 4.0                                              | 4.3                                                    |
| WHG20         | 0.5                                                             | 0.5                                                         | 3.5                                | 5.0                                              | 4.6                                                    |
| WHG25         | 1.0                                                             | 1.0                                                         | 5.0                                | 5.0                                              | 5.5                                                    |
| WHG30         | 1.0                                                             | 1.0                                                         | 5.0                                | 5.0                                              | 6.0                                                    |
| WHG35         | 1.0                                                             | 1.0                                                         | 6.0                                | 6.0                                              | 7.5                                                    |
| WHG45         | 1.0                                                             | 1.0                                                         | 8.0                                | 8.0                                              | 9.5                                                    |
| WHG55         | 1.5                                                             | 1.5                                                         | 10.0                               | 10.0                                             | 13.0                                                   |
| WHG65         | 1.5                                                             | 1.5                                                         | 10.0                               | 10.0                                             | 15.0                                                   |

### (2) Torque value of the guide rail assembly screws

Whether the guide rails are tightly locked to the reference surface affects the accuracy of the linear guide rails significantly. Therefore, to ensure that each screw can be tightened, it is recommended to use the following torque values for assembling the screws.

Table 1-24 Torque Values

| Charification | Carou appoifications | Torque valueN-cm(kgf-cr | n)               |                         |
|---------------|----------------------|-------------------------|------------------|-------------------------|
| Specification | Screw specifications | Iron material           | Casting material | Aluminum alloy material |
| WHG15         | M4x0.7Px16L          | 392(40)                 | 274(28)          | 206(21)                 |
| WHG20         | M5x0.8Px16L          | 883(90)                 | 588(60)          | 441(45)                 |
| WHG25         | M6x1Px20L            | 1373(140)               | 921(94)          | 686(70)                 |
| WHG30         | M8x1.25Px25L         | 3041(310)               | 2010(205)        | 1470(150)               |
| WHG35         | M8x1,25Px25L         | 3041(310)               | 2010(205)        | 1470(150)               |
| WHG45         | M12x1.75Px35L        | 11772(1200)             | 7840(800)        | 5880(600)               |
| WHG55         | M14x2Px45L           | 15696(1600)             | 10500(1100)      | 7840(800)               |
| WHG65         | M16x2Px50L           | 19620(2000)             | 13100(1350)      | 9800(1000)              |

## 12. Standard length and maximum length of a single rail

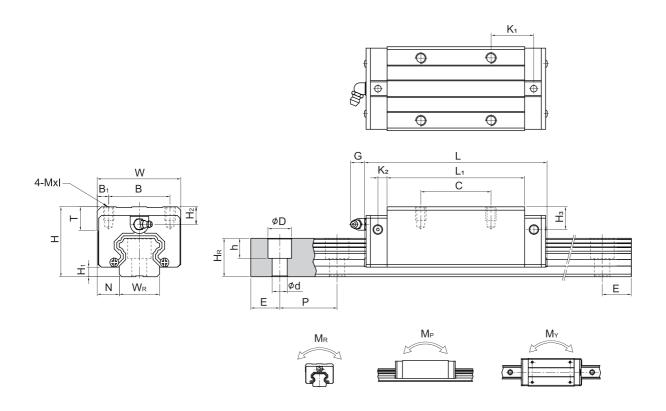
WODTOP has standard lengths of guide rails in stock to meet customer demands. If a customer orders non-standard length guide rails, the end face distance E should preferably not exceed 1/2P to prevent instability at the rear of the guide rails after assembly due to an excessively large dimension of E, which could reduce the accuracy of the linear guide rails.



L=(n-1)xP+2xE ..... Eq.2.

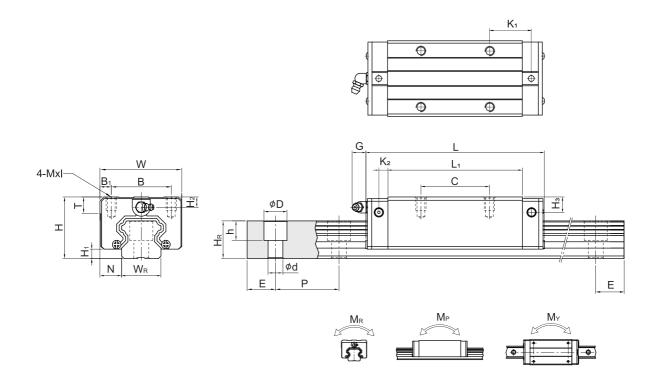
- L: Total length of the rail (mm)
- n: Number of bolt holes
- P: Bolt hole spacing (mm)
- E: Distance from bolt hole to the end face (mm)

Table 1-25 Track Length Unit; mm


| Project                                 | WHG15     | WHG20     | WHG25     | WHG30     | WHG35     | WHG45     | WHG55     | WHG65     |
|-----------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                         | 160(3)    | 220(4)    | 220(4)    | 280(4)    | 280(4)    | 570(6)    | 780(7)    | 1,270(9)  |
|                                         | 220(4)    | 280(5)    | 280(5)    | 440(5)    | 440(5)    | 885(9)    | 1,020(9)  | 1,570(11) |
|                                         | 280(5)    | 340(6)    | 340(6)    | 600(6)    | 600(6)    | 1,200(12) | 1,260(11) | 2,020(14) |
|                                         | 340(6)    | 460(8)    | 460(8)    | 760(10)   | 760(10)   | 1,620(16) | 1,500(13) | 2,620(18) |
| Standard lengthL(n)                     | 460(8)    | 640(11)   | 640(11)   | 1,000(13) | 1,000(13) | 2,040(20) | 1,980(17) |           |
|                                         | 640(11)   | 820(14)   | 820(14)   | 1,640(21) | 1,640(21) | 2,460(24) | 2,580(22) |           |
|                                         | 820(14)   | 1,000(17) | 1,000(17) | 2,040(26) | 2,040(26) | 2,985(29) | 2,940(25) |           |
|                                         |           | 1,240(21) | 1,240(21) | 2,520(32) | 2,520(32) |           |           |           |
|                                         |           |           | 1,600(27) | 3,000(38) | 3,000(38) |           |           |           |
| Spacing(P)                              | 60        | 60        | 60        | 80        | 80        | 105       | 120       | 150       |
| Standard Spacing(E <sub>s</sub> )       | 20        | 20        | 20        | 20        | 20        | 22.5      | 30        | 35        |
| Maximum length of standard end distance | 4,000(67) | 4,000(67) | 4,000(67) | 3,960(50) | 3,960(50) | 3,930(38) | 3,900(33) | 3,970(27) |
| Maximum length                          | 4,000     | 4,000     | 4,000     | 4,000     | 4,000     | 4,000     | 4,000     | 4,000     |

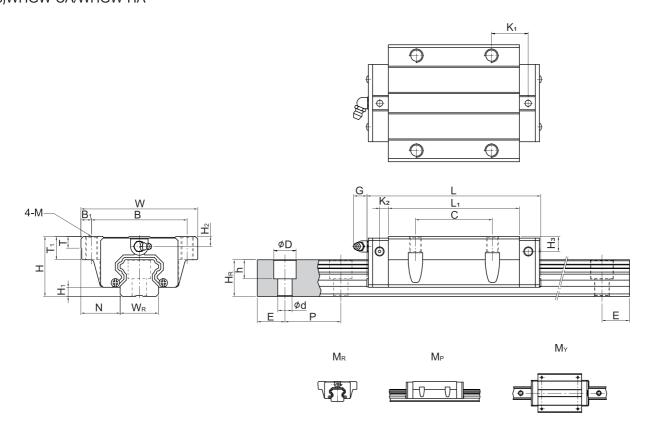
Note: 1. The general tolerance for the E dimension of the guide rail is  $0.5 \sim -0.5$  mm, while the tolerance for the guide rail threaded components' pitch E dimension is stricter at  $0 \sim -0.3$  mm.

- 2. The maximum length of the standard pitch refers to the maximum length of the guide rail when both the left and right pitches are the standard pitch.
- 3. If the customer requires a different E dimension, please contact WODTOP.


## 13. WHG series linear guide size table

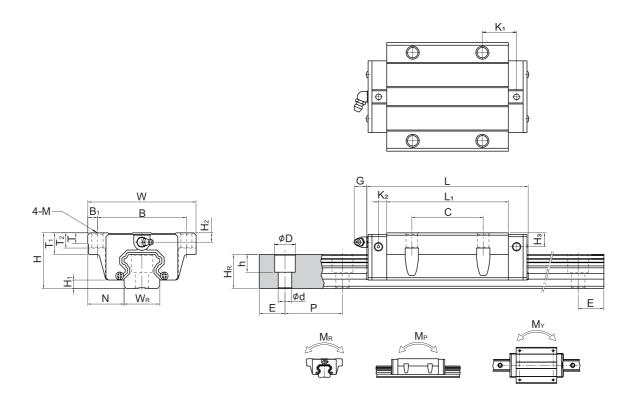
(1)WHGH-CA/WHGH-HA




|           |      | mpoi<br>size<br>(mm |        |     |     |                |         |                | SI    | ider siz | e(mm           | )    |         |      |      |      |      |      | Rail | size(r | nm) |     |      | Size of the fixed bolts for the | Basic<br>dynamic<br>rated load | Basic static rated load |      | ermissib<br>atic mom |      | We   | eight |
|-----------|------|---------------------|--------|-----|-----|----------------|---------|----------------|-------|----------|----------------|------|---------|------|------|------|------|------|------|--------|-----|-----|------|---------------------------------|--------------------------------|-------------------------|------|----------------------|------|------|-------|
| Model     |      | `                   | ,<br>N | ۱۸/ | D   | D              | <u></u> | L <sub>1</sub> | L     | L/       | K <sub>2</sub> | G    | Myl     | т    | ш    | ш    | ۱۸/  | ш    | D    | h      | 4   | D   | _    | guide rail                      |                                | C (FNI)                 |      | M <sub>P</sub>       |      |      | - 4   |
|           |      | 111                 | IN     | VV  | Ь   | D <sub>1</sub> | C       | <b>L</b> 1     | _     | TX1      | r\2            | G    | IVIXI   | '    | 1 12 | 1 13 | VVF  | RIIR | U    | "      | u   | Г   | _    | (111111)                        | C(KIV)                         | C <sub>0</sub> (kN)     | kN-m | kN-m                 | kN-m | kg   | kg/m  |
| WHGH 15CA | 28   | 4.3                 | 9.5    | 34  | 26  | 4              | 26      | 39.4           | 61.4  | 10       | 4.85           | 5.3  | M4x5    | 6    | 7.95 | 7.7  | 15   | 15   | 7.5  | 5.3    | 4.5 | 60  | 20   | M4x16                           | 14.7                           | 23.47                   | 0.12 | 0.10                 | 0.10 | 0.18 | 1.45  |
| WHGH 20CA | 30   | 16                  | 12     | 11  | 32  | 6              | 36      | 50.5           | 77.5  | 12.25    | 6              | 12   | M5x6    | 8    | 6    | 6    | 20   | 17 5 | 9.5  | 25     | 6   | 60  | 20   | M5x16                           | 27.1                           | 36.68                   | 0.27 | 0.20                 | 0.20 | 0.30 | 2.21  |
| WHGH 20HA | 30   | 7.0                 | 12     | 77  | 02  | U              |         | 65.2           |       |          | U              | 12   | IVIOAU  | U    | U    | U    | 20   | 17.0 | 0.0  | 0.0    | U   | 00  | 20   | WOXTO                           | 32.7                           | 47.96                   | 0.35 | 0.35                 | 0.35 | 0.39 |       |
| WHGH 25CA | 40   | 55                  | 10 5   | 10  | 25  | 6 5            | 35      | 58             | 84    | 15.7     | 6              | 12   | M6x8    | 8    | 10   | 9    | 23   | 22   | 11   | 9      | 7   | 60  | 20   | M6x20                           | 34.9                           | 52.82                   | 0.42 | 0.33                 | 0.33 | 0.51 | 3.21  |
| WHGH 25HA | 40   | 0.0                 | 12.0   | 40  | 33  | 0.5            | 50      | 78.6           | 104.6 | 18.5     | U              | 12   | IVIOXO  | 0    | 10   | ט    | 23   | 22   | 11   | J      | 1   | 00  | 20   | IVIOXZU                         | 42.2                           | 69.07                   | 0.56 | 0.57                 |      | 0.69 |       |
| WHGH 30CA | 45   | 6                   | 16     | 60  | 40  | 10             | 40      | 70             | 97.4  | 20.25    | 6              | 12   | M8x10   | 0.5  | 0.5  | 12 0 | 20   | 26   | 1/   | 12     | 0   | 80  | 20   | M8x25                           | 48.5                           | 71.87                   | 0.66 | 0.53                 | 0.53 | 0.88 | 1 17  |
| WHGH 30HA | 40   | U                   | 10     | 00  | 40  | 10             |         | 93             |       |          |                | 12   | IVIOXIU | 0.0  | 9.0  | 13.0 | 20   | 20   | 14   | 12     | ð   | 00  | 20   | IVIOXZO                         | 58.6                           | 93.99                   | 0.88 | 0.92                 | 0.92 | 1.16 | 4.47  |
| WHGH 35CA | EE   | 7.5                 | 40     | 70  | F0  | 10             | 50      | 80             | 112,4 | 20.6     | 7              | 12   | M040    | 10.0 | 10   | 10.0 | 24   | 20   | 4.4  | 10     | 0   | 00  | 20   | MOVOE                           | 64.6                           | 93.88                   | 1.16 | 0.81                 | 0.81 | 1.45 | 6.30  |
| WHGH 35HA | - 55 | 7.0                 | 18     | 70  | 50  | 10             |         | 105.8          |       |          | 1              | 12   | M8x12   | 10.2 | 10   | 19.0 | 34   | 29   | 14   | 12     | 9   | 80  | 20   | M8x25                           | 77.9                           | 122.77                  | 1.54 | 1.40                 | 1.40 | 1.92 |       |
| WHGH 45CA | 70   | 0.5                 | 20.5   | 0.0 | 60  | 10             | 60      | 97             | 139.4 | 23       | 10             | 10.0 | M10x17  | 10   | 10 E | 20 E | A.E. | 20   | 20   | 17     | 1.1 | 105 | 22 5 | MAOURE                          | 103.8                          | 146.71                  | 1.98 | 1.55                 | 1.55 | 2.73 | 10.44 |
| WHGH 45HA | - 70 | 9.5                 | 20.5   | 00  | 00  | 13             |         | 128.8          |       |          | 10             | 12.9 | WHUX17  | 10   | 10.0 | 30.3 | 45   | 30   | 20   | 17     | 14  | 105 | 22.3 | IVITZX33                        | 125.3                          | 191.85                  | 2.63 | 2.68                 | 2.68 | 3.61 | 10.41 |
| WHGH 55CA | 00   | 40                  | 00.5   | 400 | 7.5 | 40.5           | 75      | 117.7          | 166.7 | 27.35    | 44             | 40.0 | 140.40  | 47.5 | 00   | 00   |      |      | 00   | 00     | 40  | 400 | 00   | 144.45                          | 153.2                          | 211.23                  | 3.69 | 2.64                 | 2.64 | 4.17 | 45.00 |
| WHGH 55HA | 80   | 13                  | 23.5   | 100 | /5  | 12.5           |         | 155.8          |       |          | 11             | 12.9 | M12x18  | 17.5 | 22   | 29   | 53   | 44   | 23   | 20     | 16  | 120 | 30   | M14X45                          | 184.9                          | 276.23                  | 4.88 | 4.57                 | 4.57 |      | 15.08 |
| WHGH 65CA | 00   | 45                  | 04.5   | 400 | 70  | 0.5            | 70      | 144.2          | 200.2 | 43.1     |                | 40.0 | M16x20  | 0.5  | 45   | 45   | 00   |      | 00   | 00     | 40  | 450 | 0.5  | 140 50                          | 213.2                          | 287.48                  | 6.65 | 4.27                 | 4.27 | 7.00 | 04.40 |
| WHGH 65HA | 90   | 15                  | 31.5   | 126 | 76  |                |         | 203.6          |       |          | 14             | 12.9 | W10X2U  | 25   | 15   | 15   | 63   | 53   | 26   | 22     | 18  | 150 | 35   | MT6X5U                          | 277.8                          | 420.17                  | 9,38 |                      | 7.38 |      |       |

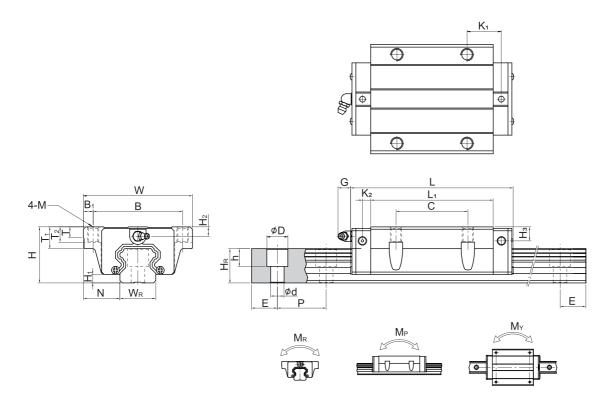
### (2)WHGL-CA/WHGL-HA




|           |    | mpo<br>size<br>(mm |        |      |    |      |    |       | Slid  | der size | (mm)           |      |            |      |                |      |    |    | Rai | size( | mm) |     |      | Size of the<br>fixed bolts<br>for the<br>guide rail | Basic<br>dynamic<br>rated load | Basic static rated load |      | ermissib<br>atic mom |                | W      | /eight        |
|-----------|----|--------------------|--------|------|----|------|----|-------|-------|----------|----------------|------|------------|------|----------------|------|----|----|-----|-------|-----|-----|------|-----------------------------------------------------|--------------------------------|-------------------------|------|----------------------|----------------|--------|---------------|
| Model     |    |                    | ,<br>N | W    | В  | В₁   | С  | Lı    | L     | K₁       | K <sub>2</sub> | G    | MxI        | Т    | H <sub>2</sub> | Нз   | Wp | Н⊳ | D   | h     | d   | Р   |      |                                                     |                                | C <sub>0</sub> (kN)     |      |                      | M <sub>Y</sub> | slider | Guide<br>rail |
|           |    |                    |        |      |    | _ '  | _  |       | _     | ,        |                |      | .,,,,      | ľ    | 2              | 5    |    | ,  |     |       | _   | Ċ   |      | (,                                                  | · (,                           |                         | kN-m | kN-m                 | kN-m           | kg     | kg/m          |
| WHGL 15CA | 24 | 4.3                | 9.5    | 34   | 26 | 4    | 26 | 39.4  | 61.4  | 10       | 4.85           | 5.3  | M4x4       | 6    | 3.95           | 3.7  | 15 | 15 | 7.5 | 5.3   | 4.5 | 60  | 20   | M4x16                                               | 14.7                           | 23,47                   | 0.12 | 0.10                 | 0.10           | 0.14   | 1.45          |
| WHGL 25CA | 36 | 5.5                | 12.5   | . 48 | 35 | 6.5  | 35 | 58    | 84    | 15.7     | 6              | 12   | M6x6       | 8    | 6              | 5    | 23 | 22 | 11  | a     | 7   | 60  | 20   | M6x20                                               | 34.9                           | 52.82                   | 0.42 | 0.33                 | 0.33           | 0.42   | 3.21          |
| WHGL 25HA | 00 | 0.0                | 12.0   | , 40 | 00 | 0.0  |    | 78.6  |       |          | v              | 12   | WIONO      | U    |                |      | 20 |    | "   | Ü     | ,   | 00  | 20   | MOXEO                                               | 42.2                           | 69.07                   | 0.56 | 0.57                 | 0.57           | 0.57   |               |
| WHGL 30CA | 12 | 6                  | 16     | 60   | 40 | 10   | 40 | 70    | 97.4  | 20.25    | 6              | 12   | M8x10      | 0.5  | 6.5            | 10.0 | 20 | 26 | 1/  | 12    | 0   | 90  | 20   | M8x25                                               | 48.5                           | 71.87                   | 0.66 | 0.53                 | 0.53           | 0.78   | 4.47          |
| WHGL 30HA | 42 | U                  | 10     | 00   | 40 | 10   |    | 93    |       |          | 0              | 12   | IVIOXIU    | 0.0  | 0.5            | 10.0 | 20 | 20 | 14  | 12    | ð   | 00  | 20   | IVIOXZO                                             | 58.6                           | 93.99                   | 0.88 | 0.92                 | 0.92           | 1.03   |               |
| WHGL 35CA | 48 | 75                 | 18     | 70   | 50 | 10   | 50 | 80    | 112.4 | 20.6     | 7              | 12   | M8x12      | 10.2 | a              | 126  | 34 | 20 | 14  | 12    | q   | 80  | 20   | M8x25                                               | 64.6                           | 93.88                   | 1.16 | 0.81                 | 0.81           | 1.14   | 6.30          |
| WHGL 35HA | 70 | 1.0                | 10     | 10   | 00 | 10   | 72 | 105.8 | 138.2 | 22.5     | '              | 12   | WIOXIZ     | 10.2 | J              | 12.0 | 7  | 20 | 17  | 12    | J   | 00  | 20   | WONED                                               | 77.9                           | 122.77                  | 1.54 | 1.40                 | 1.40           | 1.52   |               |
| WHGL 45CA | 60 | 0.5                | 20.5   | 38   | 60 | 12   | 60 | 97    | 139.4 | 23       | 10             | 12 0 | M10x17     | 16   | 2.5            | 20.5 | 15 | 38 | 20  | 17    | 1/1 | 105 | 22.5 | M12x35                                              | 103.8                          | 146.71                  | 1.98 | 1.55                 | 1.55           | 2.08   | 10.41         |
| WHGL 45HA | 00 | 3.0                | 20.0   | 00   | 00 | 10   |    | 128.8 |       |          | 10             | 12.0 | WITOXTT    | 10   | 0.0            | 20.0 | 40 | 50 | 20  | 17    | 14  | 100 | 22.0 | IVITZAGG                                            | 125.3                          | 191,85                  | 2,63 | 2.68                 | 2.68           | 2.75   | 10.41         |
| WHGL 55CA | 70 | 12                 | 23 6   | 100  | 75 | 12.5 | 75 | 117.7 | 166.7 | 27.35    | 11             | 120  | M12x18     | 17.5 | 12             | 10   | 53 | 11 | 23  | 20    | 16  | 120 | 30   | M14x45                                              | 153.2                          | 211.23                  | 3.69 | 2.64                 | 2.64           | 3.25   | 15.08         |
| WHGL 55HA | 10 | 13                 | 20.0   | 100  | 13 | 12.0 | 90 | 155.8 | 204.8 | 36.4     | 11             | 12.3 | IVI IZA 10 | 17.0 | 12             | 13   | 00 | 44 | 20  | 20    | 10  | 120 | 30   | CPAPIN                                              | 184.9                          | 276.23                  | 4.88 | 4.57                 | 4.57           |        | 10.00         |

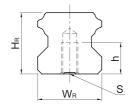
### (3)WHGW-CA/WHGW-HA

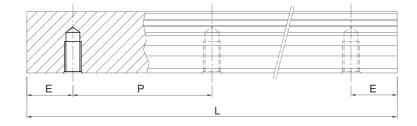



|           |    | mpor<br>size<br>(mm |      |     |      |     |     |                | SI    | ider siz       | e(mm           | )    |       |      |                |                |                |     |                | Rail | size(ı | nm) |       |      | Size of the fixed bolts for the | Basic<br>dynamic<br>rated load | Basic static rated load | - 4  | ermissib<br>atic mom |      | We   | eight / |
|-----------|----|---------------------|------|-----|------|-----|-----|----------------|-------|----------------|----------------|------|-------|------|----------------|----------------|----------------|-----|----------------|------|--------|-----|-------|------|---------------------------------|--------------------------------|-------------------------|------|----------------------|------|------|---------|
| Model     |    | Ų                   | ,    |     |      |     |     |                |       |                |                |      |       |      |                |                |                |     |                |      |        |     |       |      | guide rail                      |                                |                         |      | $M_{P}$              |      |      | ra      |
|           | Н  | H <sub>1</sub>      | Ν    | W   | В    | B₁  | С   | L <sub>1</sub> | L     | K <sub>1</sub> | K <sub>2</sub> | G    | M     | Т    | T <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | WF  | H <sub>R</sub> | D    | h      | d   | Р     | Ε    | (mm)                            | C(kN)                          | C <sub>0</sub> (kN)     | kN-m | kN-m                 | kN-m | kg   | kg/ı    |
| WHGW 15CA | 24 | 4.3                 | 16   | 47  | 38   | 4.5 | 30  | 39.4           | 61.4  | 8              | 4.85           | 5.3  | M5    | 6    | 8.9            | 3.95           | 3.7            | 15  | 15             | 7.5  | 5.3    | 4.5 | 60    | 20   | M4x16                           | 14.7                           | 23.47                   | 0.12 |                      | 0.10 |      |         |
| WHGW 20CA | 30 | 16                  | 21.5 | 63  | 53   | 5   | 40  | 50.5           | 77.5  | 10.25          | 6              | 12   | M6    | ρ    | 10             | 6              | 6              | 20  | 17.5           | 0.5  | 25     | 6   | 60    | 20   | M5x16                           | 27.1                           | 36.68                   | 0.27 | 0.20                 | 0.20 | 0.40 | 2.2     |
| WHGW 20HA | 30 | 4.0                 | 21.0 | 00  | 00   | J   | 40  | 65.2           | 92.2  | 17.6           | U              | 12   | IVIO  | 0    | 10             | U              | U              | 20  | 17.5           | 3.0  | 0.0    | U   | 00    | 20   | IVIOXIO                         | 32.7                           | 47.96                   | 0.35 | 0.35                 | 0.35 | 0.52 |         |
| WHGW 25CA | 36 | 55                  | 23.5 | 70  | 57   | 65  | 15  | 58             | 84    | 10.7           | 6              | 12   | M8    | ρ    | 1/             | 6              | 5              | 23  | 22             | 11   | ۵      | 7   | 60    | 20   | M6x20                           | 34.9                           | 52,82                   | 0.42 | 0.33                 | 0.33 | 0.51 | 3.2     |
| VHGW 25HA | 30 | 0.0                 | 20.0 | 70  | 31   | 0.0 | 40  | 78.6           |       |                | U              | 12   | IVIO  | U    | 14             | U              | J              | 20  | 22             | - 11 | J      | '   | 00    | 20   | IVIUAZU                         | 42.2                           | 69.07                   | 0.56 | 0.57                 | 0.57 | 0.80 | ·       |
| VHGW 30CA | 42 | 6                   | 31   | 90  | 72   | q   | 52  | 70             | 97.4  | 14.25          | 6              | 12   | M10   | 85   | 16             | 65             | 10.8           | 28  | 26             | 14   | 12     | q   | 80    | 20   | M8x25                           | 48.5                           | 71.87                   | 0.66 | 0.53                 | 0.53 | 1.09 | 4.4     |
| WHGW 30HA | 72 | U                   | 01   | 30  | 12   | J   | 52  |                | 120.4 |                |                | 12   | IVITO | 0.0  | 10             | 0.0            | 10.0           | 20  | 20             | 17   | 12     | J   | 00    | 20   | WOXZO                           | 58.6                           | 93.99                   | 0.88 | 0.92                 | 0.92 |      |         |
| WHGW 35CA | 18 | 75                  | 33   | 100 | 82   | ۵   | 62  | 80             | 112.4 | 14.6           | 7              | 12   | M10   | 10 1 | 18             | ۵              | 126            | 3/1 | 20             | 1/   | 12     | ۵   | 80    | 20   | M8x25                           | 64.6                           | 93,88                   | 1.16 | 0.81                 | 0.81 | 1.56 | 6.30    |
| VHGW 35HA | 70 | 1.0                 | 00   | 100 | 02   | J   |     | 105.8          |       |                | '              | 12   | IVITO | 10.1 | 10             | Ü              | 12.0           | JŦ  | 23             | 17   | 12     | 3   | 00    | 20   | IVIOAZO                         | 77.9                           | 122.77                  | 1.54 | 1.40                 | 1.40 | 2.06 | 0.00    |
| WHGW 45CA | 60 | 95                  | 37.5 | 120 | 100  | 10  | 80  | 97             | 139.4 | 13             | 10             | 12 9 | M12   | 15 1 | 22             | 8.5            | 20.5           | 45  | 38             | 20   | 17     | 14  | 105 1 | 22 5 | M12x35                          | 103.8                          | 146.71                  | 1.98 | 1.55                 | 1.55 | 2.79 | 10.4    |
| VHGW 45HA | 00 | 0,0                 | 01.0 | 120 | 100  | 10  |     | 128.8          |       |                | 10             | 12.0 | IVITZ | 10.1 |                | 0.0            | 20.0           | 40  | 00             | 20   | "      | 17  | 100 2 | 22,0 | WITZAGO                         | 125.3                          | 191.85                  | 2.63 | 2.68                 | 2.68 | 3.69 |         |
| WHGW 55CA | 70 | 13                  | 43.5 | 140 | 116  | 12  | 95  | 117.7          | 166.7 | 17.35          | 11             | 12 9 | M14   | 17 5 | 26.5           | 12             | 10             | 53  | 44             | 23   | 20     | 16  | 120   | 30   | M14x45                          | 153.2                          | 211.23                  | 3.69 | 2.64                 | 2.64 | 4.52 | 15.0    |
| WHGW 55HA | 10 | 10                  | 70.0 | 170 | 110  | 12  |     | 155.8          |       |                | "              | 12.0 | IVIT  | 17.0 | 20.0           | 12             | 10             | 00  |                | 20   | 20     | 10  | 120   | 00   | WITAATO                         | 184.9                          | 276.23                  | 4.88 | 4.57                 | 4.57 | 5.96 |         |
| WHGW 65CA | an | 15                  | 53 5 | 170 | 1/12 | 14  | 110 | 144.2          | 200.2 | 23.1           | 14             | 12 0 | M16   | 25   | 37 5           | 15             | 15             | 63  | 53             | 26   | 22     | 18  | 150   | 35   | M16x50                          | 213.2                          | 287.48                  | 6.65 | 4.27                 | 4.27 | 9.17 | 21.1    |
| NHGW 65HA | 00 | 10                  | 00.0 | 110 | 172  | 17  |     | 203.6          |       |                | 17             | 12.0 | IVITO | 20   | 0110           | 10             | 10             | 00  | 00             | 20   |        | 10  | 100   | 00   | WITOXOO                         | 277.8                          | 420.17                  | 9.38 |                      | 7.38 |      |         |

### (4)WHGW-CB/WHGW-HB




|           |    | mpon<br>size<br>(mm) |      |      |      |     |     |                | Sli   | ider siz       | e(mm           | )    |            |      |                |       |                |                |    | Rails          | size(n | nm) |     |     |      | Size of the fixed bolts for the | dynamic | Basic<br>static     | stati | rmissible<br>ic momer |      | We   | ight: |
|-----------|----|----------------------|------|------|------|-----|-----|----------------|-------|----------------|----------------|------|------------|------|----------------|-------|----------------|----------------|----|----------------|--------|-----|-----|-----|------|---------------------------------|---------|---------------------|-------|-----------------------|------|------|-------|
| 1odel     |    | (111111)             |      |      |      |     |     |                |       |                |                |      |            |      |                |       |                |                |    |                |        |     |     |     |      | for the<br>guide rail           | 1000    |                     | IVIK  | $M_{\text{P}}$        |      |      | rail  |
|           | Н  | H₁                   | Ν    | W    | В    | B₁  | С   | L <sub>1</sub> | L     | K <sub>1</sub> | K <sub>2</sub> | G    | М          | Т    | T <sub>1</sub> | $T_2$ | H <sub>2</sub> | H <sub>3</sub> | WR | H <sub>R</sub> | D      | h   | d   | Р   | Ε    | (mm)                            | C(kN)   | C <sub>0</sub> (kN) | kN-m  | kN-m                  | kN-m | kg   | kg/n  |
| WHGW 15CB | 24 | 4.3                  | 16   | 47   | 38   | 4.5 | 30  | 39.4           | 61.4  | 8              | 4.85           | 5.3  | Ø4.5       | 6    | 8.9            | 6.95  | 3.95           | 3.7            | 15 | 15             | 7.5    | 5.3 | 4.5 | 60  | 20   | M4x16                           | 14.7    | 23.47               | 0.12  |                       |      |      |       |
| WHGW 20CB | 30 | 16                   | 21.5 | 63   | 53   | 5   | 40  | 50.5           | 77.5  | 10.25          | 6              | 12   | dβ         | 8    | 10             | 9.5   | 6              | 6              | 20 | 17 5           | 0.5    | 8.5 | 6   | 60  | 20   | M5x16                           | 27.1    | 36.68               | 0.27  | 0.20                  | 0.20 |      | 2.21  |
| WHGW 20HB | 30 | 4.0                  | 21.0 | 00   | 00   | J   |     |                | 92.2  |                | U              | 12   | ΨU         | U    | 10             | 0.0   | U              | U              | 20 | 17.0           | 3.0    | 0.0 | U   | 00  | 20   | WIDATO                          | 32.7    | 47.96               | 0.35  | 0.35                  | 0.35 | 0.52 | 2,21  |
| WHGW 25CB | 36 | 5.5                  | 23.5 | 70   | 57   | 65  | 45  | 58             | 84    | 10.7           | 6              | 12   | <b>φ</b> 7 | 8    | 1/             | 10    | 6              | 5              | 23 | 22             | 11     | 9   | 7   | 60  | 20   | M6x20                           | 34.9    | 52.82               | 0.42  | 0.33                  | 0.33 | 0.59 | 3.21  |
| WHGW 25HB | 30 | 0.0                  | 20.0 | 10   | 01   | 0.0 | 70  | 78.6           | 104.6 | 21             | U              | 12   | ۲۱         | U    | 17             | 10    | U              | J              | 20 | 22             | "      | J   | '   | 00  | 20   | WOXZO                           | 42.2    | 69.07               | 0.56  |                       | 0.57 | 0.80 |       |
| WHGW 30CB | 42 | 6                    | 31   | ٩n   | 72   | q   | 52  | 70             | 97.4  | 14.25          | 6              | 12   | φQ         | 8.5  | 16             | 10    | 6.5            | 10.8           | 28 | 26             | 14     | 12  | q   | 80  | 20   | M8x25                           | 48.5    | 71.87               | 0.66  | 0.53                  | 0.53 | 1.09 | 4 47  |
| WHGW 30HB | 72 | Ü                    | 01   | 00   | 12   | J   | 02  | 93             | 120.4 | 25.75          | Ü              | 12   | 70         | 0.0  | 10             | 10    | 0.0            | 10.0           | 20 | 20             | 17     | 12  | J   | 00  | 20   | WOXZO                           | 58.6    | 93.99               | 0.88  | 0.92                  | 0.92 | 1.44 | 7.77  |
| WHGW 35CB | 48 | 75                   | 33   | 100  | 82   | a   | 62  | 80             | 112.4 | 14.6           | 7              | 12   | ďΟ         | 10 1 | 18             | 13    | a              | 126            | 34 | 29             | 14     | 12  | a   | 80  | 20   | M8x25                           | 64.6    | 93.88               | 1.16  | 0.81                  | 0.81 | 1.56 | 6.30  |
| WHGW 35HB | 70 | 7.0                  | 00   | 100  | 02   | J   |     |                | 138.2 |                | ,              | 12   | 70         | 10.1 | 10             | 10    | J              | 12.0           | JT | 20             | 17     | 12  | J   | 00  | 20   | WOXZO                           | 77.9    | 122.77              | 1.54  |                       | 1.40 |      |       |
| WHGW 45CB | 60 | 9.5                  | 37 5 | 120  | 100  | 10  | 80  | 97             | 139.4 | 13             | 10             | 12 9 | d11        | 15 1 | 22             | 15    | 8.5            | 20.5           | 45 | 38             | 20     | 17  | 14  | 105 | 22 5 | M12x35                          | 103.8   | 146.71              | 1.98  | 1.55                  | 1.55 | 2.79 | 10 41 |
| WHGW 45HB | 00 | 0.0                  | 01.0 | 120  | 100  | 10  |     |                | 171.2 |                | 10             | 12.0 | 711        | 10.1 |                | 10    | 0.0            | 20.0           | 70 | 00             | 20     | "   | 17  | 100 | 22.0 | WIZAGO                          | 125.3   | 191.85              | 2.63  | 2.68                  | 2.68 | 3.69 | 10.71 |
| WHGW 55CB | 70 | 13                   | 125  | 1/10 | 116  | 12  | 05  | 117.7          | 166.7 | 17.35          | 11             | 12 0 | d1/        | 175  | 26.5           | 17    | 12             | 10             | 53 | 11             | 23     | 20  | 16  | 120 | 30   | M14x45                          | 153.2   | 211.23              | 3.69  | 2.64                  | 2.64 | 4.52 | 15.08 |
| WHGW 55HB | 10 | 10                   | 70.0 | 170  | 110  | 12  |     |                | 204.8 |                | ''             | 12.0 | דוץ        | 17.0 | 20.0           | 17    | 12             | 10             | 00 | 77             | 20     | 20  | 10  | 120 | 00   | WITHAU                          | 184.9   | 276.23              | 4.88  |                       | 4.57 | 5.96 |       |
| WHGW 65CB | ۵n | 15                   | 53 5 | 170  | 142  | 14  | 110 | 144.2          | 200.2 | 23.1           | 14             | 12 0 | d16        | 25   | 37 5           | 23    | 15             | 15             | 63 | 53             | 26     | 22  | 18  | 150 | 35   | M16x50                          | 213.2   | 287.48              | 6.65  | 4.27                  | 4.27 | 9.17 | 21 18 |
| WHGW 65HB | 30 | 10                   | 00.0 | 170  | 1-72 |     |     |                | 259.6 |                | 17             | 12,0 | F 10       | 20   | 01,0           | 20    | 10             | 10             | 00 | 00             | 20     |     | 10  | 100 | 00   | WITOXOO                         | 277.8   | 420.17              | 9.38  |                       | 7.38 |      |       |

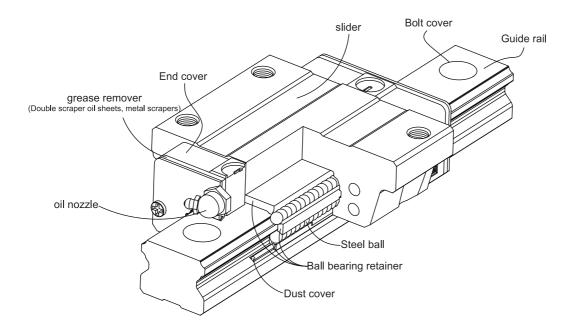

### (5)WHGW-CC/WHGW-HC



| . 4.1     |    | npon<br>size<br>'mm) |      |      |           |                |     |                | Sli   | der siz        | e(mm)          | ı    |       |      |                |       |                |                |                | Rai <b>l</b> si | ize(m | m)  |     |     |      | Size of the<br>fixed bolts<br>for the<br>guide rail | Basic<br>dynamic | Basic<br>static     | Pe<br>stati    | missib <b>l</b> e<br>c momer |         | We     | ight  |
|-----------|----|----------------------|------|------|-----------|----------------|-----|----------------|-------|----------------|----------------|------|-------|------|----------------|-------|----------------|----------------|----------------|-----------------|-------|-----|-----|-----|------|-----------------------------------------------------|------------------|---------------------|----------------|------------------------------|---------|--------|-------|
| odel      |    | ,                    |      |      |           |                |     |                |       |                |                |      |       |      |                |       |                |                |                |                 |       |     |     |     |      | guide rail                                          | rateu Iuau       | rated load          | $M_{\text{R}}$ | $M_{\text{P}}$               | $M_{Y}$ | slider | Guid  |
|           | Н  | H₁                   | N    | W    | В         | B <sub>1</sub> | С   | L <sub>1</sub> | L     | K <sub>1</sub> | K <sub>2</sub> | G    | М     | Т    | T <sub>1</sub> | $T_2$ | H <sub>2</sub> | H <sub>3</sub> | W <sub>R</sub> | H <sub>R</sub>  | D     | h   | d   | Р   | Ε    | (mm)                                                | C(kN)            | C <sub>0</sub> (kN) |                |                              |         |        |       |
| WHGW 15CC | 24 | 4.3                  | 16   | 47   | 38        | 4.5            | 30  | 39.4           | 61.4  | 8              | 4.85           | 5.3  | M5    | 6    | 8.9            | 6.95  | 3.95           | 3.7            | 15             | 15              | 7.5   | 5.3 | 4.5 | 60  | 20   | M4x16                                               | 14.7             | 23.47               | 0.12           | 0.10                         |         |        |       |
| WHGW 20CC | 20 | 16                   | 24 5 | 60   | E2        | _              | 40  | 50.5           | 77.5  | 10.25          | c              | 12   | MG    | 8    | 10             | 0.5   | c              | c              | 20             | 17 E            | 0.5   | 0 5 | c   | 60  | 20   | ME <sub>V</sub> 16                                  | 27.1             | 36.68               | 0.27           | 0.20                         | 0.20    |        |       |
| WHGW 20HC | 30 | 4.0                  | 21.5 | 03   | 53        | Э              | 40  |                | 92.2  |                | b              | 12   | OIVI  | ŏ    | 10             | 9.5   | O              | 6              | 20             | 17.5            | 9.5   | 0.0 | О   | 60  | 20   | M5x16                                               | 32.7             | 47.96               | 0.35           | 0.35                         | 0.35    | 0.52   | 2,21  |
| WHGW 25CC | 26 | 55                   | 22.5 | 70   | <b>67</b> | 6 5            | 15  | 58             | 84    | 10.7           | ۵              | 10   | M8    | 0    | 1/             | 10    | ۵              | 5              | 22             | 22              | 11    | 0   | 7   | 60  | 20   | M6x20                                               | 34.9             | 52.82               | 0.42           | 0.33                         | 0.33    | 0.59   | 2 24  |
| WHGW 25HC | 30 | 0,0                  | 23,3 | 10   | 31        | 0,0            | 40  | 78.6           | 104.6 | 21             | Ü              | 12   | IVIO  | 0    | 14             | 10    | 0              | J              | 23             | 22              | 11    | Э   | 1   | 00  | 20   | IVIOXZU                                             | 42.2             | 69.07               | 0.56           | 0.57                         | 0.57    | 0.80   | 3,21  |
| WHGW 30CC | 12 | 6                    | 21   | ۵n   | 72        | ۵              | 52  | 70             | 97.4  | 14.25          | 6              | 12   | M10   | 2.5  | 16             | 10    | 6.5            | 10 Q           | 28             | 26              | 1/    | 12  | ۵   | 80  | 20   | M8x25                                               | 48.5             | 71.87               | 0.66           | 0.53                         | 0.53    | 1.09   | 4.47  |
| WHGW 30HC | 42 | U                    | 31   | 30   | 12        | 3              | JZ  | 93             | 120.4 | 25.75          | U              | 12   | IVITO | 0.0  | 10             | 10    | 0.0            | 10.0           | 20             | 20              | 14    | 12  | J   | 00  | 20   | IVIOAZJ                                             | 58.6             | 93.99               | 0.88           | 0.92                         | 0.92    | 1.44   |       |
| NHGW 35CC | 10 | 7.5                  | 22   | 100  | 00        | ٥              | 60  | 80             | 112.4 | 14.6           | 7              | 10   | M10   | 10.1 | 10             | 12    | 0              | 126            | 24             | 20              | 1.1   | 12  | ٥   | 00  | 20   | M8x25                                               | 64.6             | 93.88               | 1.16           | 0.81                         | 0.81    | 1.56   | 6 20  |
| NHGW 35HC | 40 | 1.0                  | 55   | 100  | 02        | 9              |     |                | 138.2 |                | '              | 12   | IVITO | 10.1 | 10             | 13    | J              | 12.0           | 34             | 23              | 14    | 12  | J   | 00  | 20   | IVIOXZJ                                             | 77.9             | 122.77              | 1.54           | 1.40                         | 1.40    | 2.06   |       |
| WHGW 45CC | 60 | 0.5                  | 37 5 | 120  | 100       | 10             | 80  | 97             | 139.4 | 13             | 10             | 12 0 | M12   | 15 1 | 22             | 15    | 8,5            | 20.5           | 15             | 38              | 20    | 17  | 1/1 | 105 | 22.5 | M12x35                                              | 103.8            | 146.71              | 1.98           | 1.55                         | 1.55    | 2.79   | 10.4  |
| WHGW 45HC | 00 | 3.5                  | 31.3 | 120  | 100       | 10             |     |                | 171.2 |                | 10             | 12.3 | IVITZ | 10.1 | 22             | 10    | 0.0            | 20.0           | 40             | 30              | 20    | 17  | 17  | 100 | 22.0 | WITZAGG                                             | 125.3            | 191.85              | 2.63           | 2.68                         | 2.68    | 3.69   | 10,4  |
| WHGW 55CC | 70 | 12                   | 125  | 1//0 | 116       | 12             | 05  | 117.7          | 166.7 | 17.35          | 11             | 12 0 | M14   | 17 5 | 26.5           | 17    | 12             | 10             | 53             | 11              | 23    | 20  | 16  | 120 | 30   | M1/1v//5                                            | 153.2            | 211.23              | 3.69           | 2.64                         | 2.64    | 4.52   | 15.09 |
| WHGW 55HC | 10 | 10                   | 70.0 | U+1  | 110       | 12             |     |                | 204.8 |                | - 11           | 12.0 | IVIT  | 17.5 | 20.0           | 17    | 12             | 10             | 55             | 77              | 20    | 20  | 10  | 120 | 50   | WITHATO                                             | 184.9            | 276.23              | 4.88           |                              | 4.57    |        |       |
| WHGW 65CC | ۵n | 15                   | 53 5 | 170  | 142       | 14             | 110 | 144.2          | 200.2 | 23.1           | 14             | 12 0 | M16   | 25   | 37 5           | 23    | 15             | 15             | 63             | 53              | 26    | 22  | 18  | 150 | 35   | M16x50                                              | 213.2            | 287.48              | 6.65           | 4.27                         | 4.27    | 9.17   | 21 18 |
| WHGW 65HC | 00 | 10                   | 00,0 | 110  | 1-72      | 17             |     |                | 259.6 |                | 17             | 12,0 | 14110 | 20   | 01.0           | 20    | 10             | 10             | 00             | 00              | 20    |     | 10  | 100 | 00   | WITOXOO                                             | 277.8            | 420.17              | 9.38           |                              | 7.38    |        |       |

### (6)WHGR-T Lockable Rail Size Table



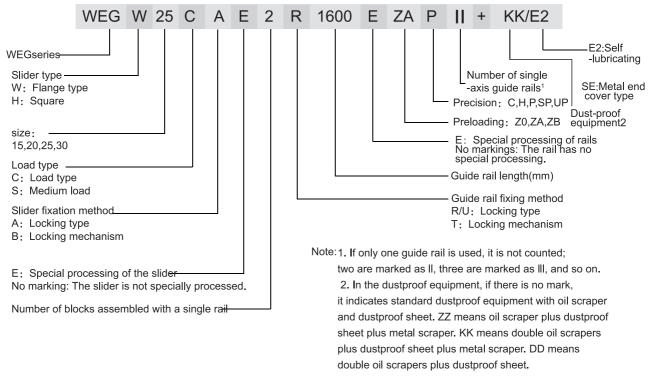



| Model   | Guide rail dime | Guide rail dimensions(mm) |           |    |     |      |        |  |  |  |
|---------|-----------------|---------------------------|-----------|----|-----|------|--------|--|--|--|
| Model   | WR              | HR                        | S         | h  | Р   | E    | (kg/m) |  |  |  |
| WHGR15T | 15              | 15                        | M5x0.8P   | 8  | 60  | 20   | 1.48   |  |  |  |
| WHGR20T | 20              | 17.5                      | M6x1P     | 10 | 60  | 20   | 2.29   |  |  |  |
| WHGR25T | 23              | 22                        | M6x1P     | 12 | 60  | 20   | 3.35   |  |  |  |
| WHGR30T | 28              | 26                        | M8x1.25P  | 15 | 80  | 20   | 4.67   |  |  |  |
| WHGR35T | 34              | 29                        | M8x1.25P  | 17 | 80  | 20   | 6.51   |  |  |  |
| WHGR45T | 45              | 38                        | M12x1.75P | 24 | 105 | 22.5 | 10.87  |  |  |  |
| WHGR55T | 53              | 44                        | M14x2P    | 24 | 120 | 30   | 15.67  |  |  |  |
| WHGR65T | 63              | 53                        | M20x2.5P  | 30 | 150 | 35   | 21.73  |  |  |  |

## 1. WEG Features of the WEG series linear guides

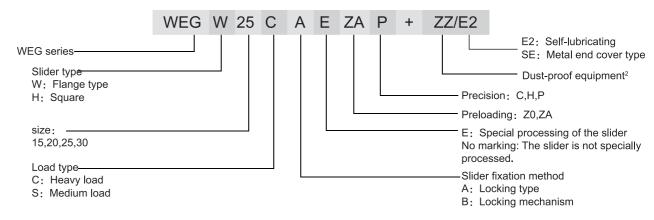
The WEG series uses a four-row steel ball bearing design to bear loads, which provides high rigidity and high load capacity. It also has features for equal load distribution in four directions and automatic self-alignment function, allowing it to absorb assembly errors on the installation surface, thus meeting high precision requirements. Additionally, it reduces assembly height and shortens slider length, making it very suitable for the high-speed automation industry and compact equipment with space constraints. The slider is equipped with a steel ball retainer to prevent ball drop; this design not only facilitates customers in installing linear guides but also ensures that there will be no ball drop when the slider is removed. Furthermore, it allows for interchangeability within acceptable precision limits.

### 2. WEG chassis structure

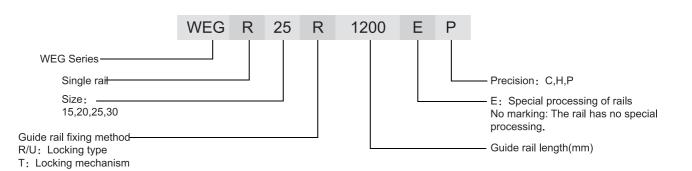



- O Rolling loop system: slider, guide rail, end cap, steel balls, steel ball retainer
- O Lubrication system: oil nozzle, oil pipe joint
- O Dust protection system: oil scraper, bottom sealing dust cover, guide rail bolt cover, metal scraper

## 3. Product Specification Description


The WEG series is divided into two types of linear guides: non-interchangeable and interchangeable types. Both have the same specifications, but the main difference is that in the interchangeable type, the sliders and guides can be used interchangeably, which is more convenient. However, the assembly precision of the interchangeable type cannot reach the ultra-precision levels of the non-interchangeable type. Nonetheless, since the assembly precision of the WODTOP interchangeable type has now reached a certain standard, it is a convenient choice for customers who do not require paired installation of linear guides. The product specifications primarily indicate the dimensions, type, precision grade, preloading, and other specifications of the linear guides to facilitate confirmation of the products during ordering.

### (1)Non-interchangeable linear guide rail product model




### (2)Interchangeable linear guide rail product model

O Interchangeable slider product model



#### O Interchangeable rail product model



## 4. WEG series type

### (1)Slider type

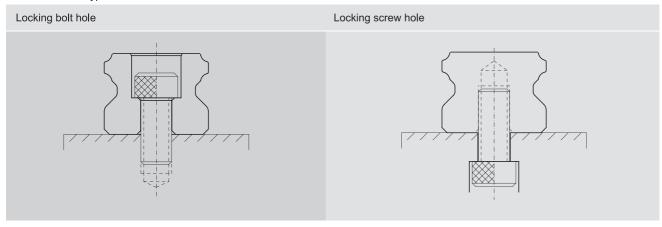
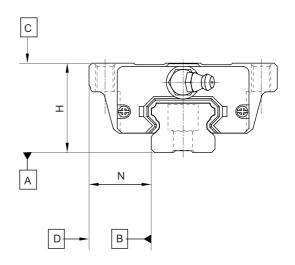

WODTOP offers two types of linear guides: flange type and square type.

Table 2-1 Slider Type

| Model       | Specification      | shape | Height dimensions (mm) | Guide rail<br>length<br>(mm) | Application device                                                                                                                                      |
|-------------|--------------------|-------|------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Square      | WEGH-SA<br>WEGH-CA |       | 24<br>↓<br>48          | 100<br>↓<br>4000             | <ul> <li>automation device</li> <li>High-speed transport equipment</li> <li>Precision measuring instruments</li> <li>Semiconductor equipment</li> </ul> |
|             | WEGW-SA<br>WEGW-CA |       | 24<br>↓<br>48          | 100<br>↓<br>4000             |                                                                                                                                                         |
| Flange type | WEGW-SB<br>WEGW-CB |       | 24<br>↓<br>48          | 100<br>↓<br>4000             |                                                                                                                                                         |

(2) Guide rail type
In addition to the standard lock-type bolt hole guide rail, WODTOP also offers a lower lock-type screw hole guide rail, making it convenient for customers to install and use.

Table 2-2 Guide Type




## Low-assembly ball linear guide rail

### **WEG** series

## 5. Accuracy level

The accuracy of the WEG series linear guides is divided into five levels: ordinary, high, precision, ultra-precision, and super high precision. Customers can select the accuracy according to their equipment's accuracy requirements.



### (1)Non-interchangeable linear guide rail precision

Table 2-3 Assembly Precision Table

Unit: mm

| Model                                                                     | WEG-15,20                           |                 |                     |                              |                                |  |
|---------------------------------------------------------------------------|-------------------------------------|-----------------|---------------------|------------------------------|--------------------------------|--|
| Accuracy level                                                            | Basic level (C)                     | Advanced<br>(H) | Precision level (P) | Ultra Precision<br>Level(SP) | Ultra high precision grade(UP) |  |
| Permissible dimensional tolerance of height H                             | ±0.1                                | ±0.03           | 0<br>-0.03          | 0<br>-0.015                  | 0<br>-0.008                    |  |
| Permissible dimensional tolerance of width N                              | ±0.1                                | ±0.03           | 0<br>-0.03          | 0<br>-0.015                  | 0<br>-0.008                    |  |
| Mutual error of paired height H                                           | 0.02                                | 0.01            | 0.006               | 0.004                        | 0.003                          |  |
| Mutual errors of paired width N                                           | 0.02                                | 0.01            | 0.006               | 0.004                        | 0.003                          |  |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 2-7) |                 |                     |                              |                                |  |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (see Table 2-7) |                 |                     |                              |                                |  |

Table 2-4 Assembly Precision Table

Unit: mm

| Model                                                                     | WEG-25,30                               |                 |                     |                              |                                |  |
|---------------------------------------------------------------------------|-----------------------------------------|-----------------|---------------------|------------------------------|--------------------------------|--|
| Accuracy level                                                            | Basic level<br>(C)                      | Advanced<br>(H) | Precision level (P) | Ultra Precision<br>Level(SP) | Ultra high precision grade(UP) |  |
| Permissible dimensional tolerance of height H                             | ±0.1                                    | ±0.04           | 0<br>-0.04          | 0<br>-0.02                   | 0<br>-0.01                     |  |
| Permissible dimensional tolerance of width N                              | ±0.1                                    | ±0.04           | 0<br>-0.04          | 0<br>-0.02                   | 0<br>-0.01                     |  |
| Mutual error of paired height H                                           | 0.02                                    | 0.015           | 0.007               | 0.005                        | 0.003                          |  |
| Mutual errors of paired width N                                           | 0.03                                    | 0.015           | 0.007               | 0.005                        | 0.003                          |  |
| The traveling parallelism of slider C facing the surface of guide rail A. | the Walking parallelism (see Table 2-7) |                 |                     |                              |                                |  |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (see Table 2-7)     |                 |                     |                              |                                |  |

45

### **WEG** series

# Low-assembly ball linear guide rail

### (2)Interchangeable linear guide rail accuracy

Table 2-5 Single Piece Accuracy Table

Unit: mm

| Model                                                                     | WEG-15,20                           |                 |                     |  |  |
|---------------------------------------------------------------------------|-------------------------------------|-----------------|---------------------|--|--|
| Accuracy level                                                            | Basic level<br>(C)                  | Advanced<br>(H) | Precision level (P) |  |  |
| Permissible dimensional tolerance of height H                             | ±0.1                                | ±0.03           | ±0.015              |  |  |
| Permissible dimensional tolerance of width N                              | ±0.1                                | ±0.03           | ±0.015              |  |  |
| Mutual error of paired height H                                           | 0.02                                | 0.01            | 0.006               |  |  |
| Mutual errors of paired width N                                           | 0.02                                | 0.01            | 0.006               |  |  |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 2-7) |                 |                     |  |  |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (see Table 2-7) |                 |                     |  |  |

### Table 2-6 Single Piece Accuracy Table

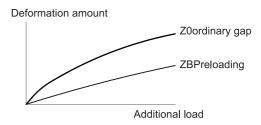
Unit: mm

| Model                                                                     | WEG-25,30                           |                 |                     |  |  |
|---------------------------------------------------------------------------|-------------------------------------|-----------------|---------------------|--|--|
| Accuracy level                                                            | Basic level<br>(C)                  | Advanced<br>(H) | Precision level (P) |  |  |
| Permissible dimensional tolerance of height H                             | ±0.1                                | ±0.04           | ±0.02               |  |  |
| Permissible dimensional tolerance of width N                              | ±0.1                                | ±0.04           | ±0.02               |  |  |
| Mutual error of paired height H                                           | 0.02                                | 0.015           | 0.007               |  |  |
| Mutual errors of paired width N                                           | 0.03                                | 0.015           | 0.007               |  |  |
| The traveling parallelism of slider C facing the surface of guide rail A. | Walking parallelism (see Table 2-7) |                 |                     |  |  |
| The traveling parallelism of slider D facing the surface of guide rail B. | Walking parallelism (see Table 2-7) |                 |                     |  |  |

### (3)Walking parallelism accuracy

Table 2-7 Walking Parallelism Precision Table

| Guide rail length(mm) | Accuracy level(µm | )  |    |    |    |
|-----------------------|-------------------|----|----|----|----|
|                       | С                 | Н  | Р  | SP | UP |
| ~ 100                 | 12                | 7  | 3  | 2  | 2  |
| 100~ 200              | 14                | 9  | 4  | 2  | 2  |
| 200~ 300              | 15                | 10 | 5  | 3  | 2  |
| 300~ 500              | 17                | 12 | 6  | 3  | 2  |
| 500~ 700              | 20                | 13 | 7  | 4  | 2  |
| 700~ 900              | 22                | 15 | 8  | 5  | 3  |
| 900~ 1,100            | 24                | 16 | 9  | 6  | 3  |
| 1,100~ 1,500          | 26                | 18 | 11 | 7  | 4  |
| 1,500~ 1,900          | 28                | 20 | 13 | 8  | 4  |
| 1,900~ 2,500          | 31                | 22 | 15 | 10 | 5  |
| 2,500~ 3,100          | 33                | 25 | 18 | 11 | 6  |
| 3,100~ 3,600          | 36                | 27 | 20 | 14 | 7  |
| 3,600~ 4,000          | 37                | 28 | 21 | 15 | 7  |


## Low-assembly ball linear guide rail

### **WEG** series

### 6, pre-stress

### (1)Definition of pre-stress

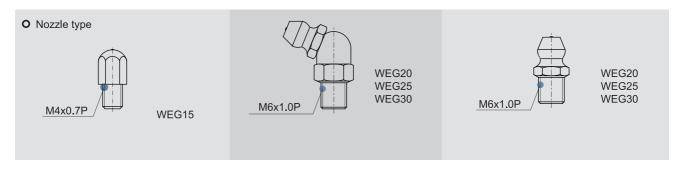
Pre-load is the force applied to the steel balls in advance, which means increasing the diameter of the steel balls and applying pre-load through the negative clearance between the steel balls and the rail. This action can improve the rigidity of the linear guide and eliminate gaps; as explained in the diagram to the right, increasing the pre-load can enhance the rigidity of the linear guide. However, for smaller specifications, it is recommended to use light pre-load to avoid reducing its service life due to excessive pre-load.



### (2)Preloading Level

The WEG series linear guides offer three standard preloads, allowing you to choose the appropriate preload based on the application.

Table 2-8 Pre-compression Level


| Preloading Level      | mark | Pre-stress  | Terms of use                                                                         |
|-----------------------|------|-------------|--------------------------------------------------------------------------------------|
| ordinary gap          | Z0   | 0~0.02C     | The load direction is fixed and the impact is small, with low accuracy requirements. |
| Light pre-compression | ZA   | 0.03C~0.05C | Light load and high precision requirements                                           |
| Preloading            | ZB   | 0.06C~0.08C | Rigid requirements, and the usage environment involves vibrations and impacts.       |

| Level            | Interchangeable linear rail (single output part) | Non-interchangeable rail track (component) |
|------------------|--------------------------------------------------|--------------------------------------------|
| Preloading Level | Z0,ZA                                            | Z0,ZA,ZB                                   |

Note: The preload C is the dynamic rated load.

### 7, Lubrication method

### (1)Lubricating grease



### Oil nozzle position

According to customer needs, oil nozzles can be installed at the front or rear end of the slider for manual lubrication. The WEG series specially reserves a side oil hole position on the side of the end cover for installing the oil nozzle (usually a straight oil nozzle), providing lateral lubrication. It is recommended to position the lateral lubrication on the non-side reference edge, but if there are special requirements, it can also be placed on the side reference edge. If customers have the above lateral lubrication needs, please contact us. The WEG series also reserves an upper oil hole position at the top of the end cover. If the customer wishes to supply oil from the top of the end cover, they must use a 0.8mm diameter needle to preheat and puncture the upper hole at the specified position, avoiding using a drill to pierce the upper hole, as debris poses a risk of contaminating the oil channel. For automatic lubrication of linear guides using a connecting pipe, oil pipe connectors can be selected based on the type of connecting pipe.

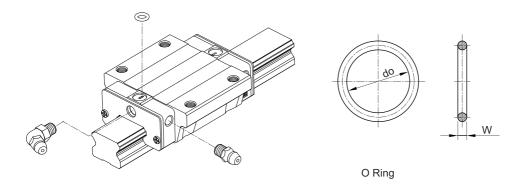
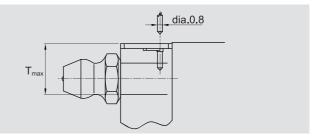




Table 2-9 O-Ring Specifications and Maximum Allowable Hole Depth

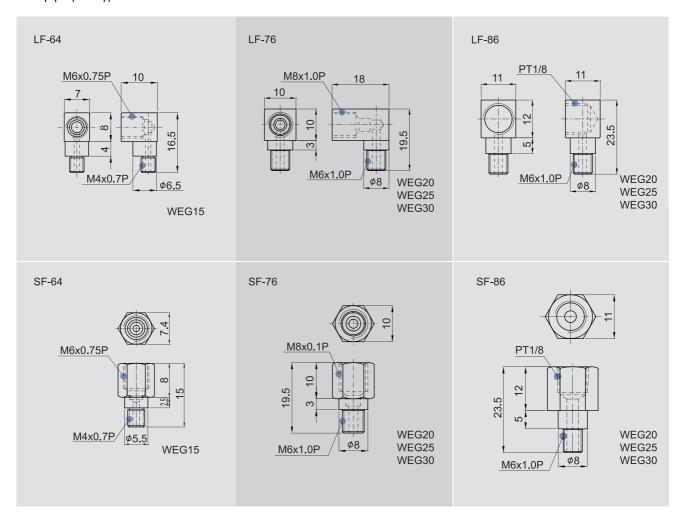
| Specification | O-Ring Specifica | Maximum allowable |                                            |
|---------------|------------------|-------------------|--------------------------------------------|
| Specification | do(mm)           | W(mm)             | perforation depth<br>T <sub>max</sub> (mm) |
| WEG15         | 2.5±0.15         | 1.5±0.15          | 6.9                                        |
| WEG20         | 4.5±0.15         | 1.5±0.15          | 8.4                                        |
| WEG25         | 4.5±0.15         | 1.5±0.15          | 10.4                                       |
| WEG30         | 4.5±0.15         | 1.5±0.15          | 10.4                                       |



### The single slider is filled with lubricant grease.

Table 2-10 Volume of lubricant grease for a single slider

| Specification | Medium load<br>(cm³) | Heavy load<br>(cm³) |
|---------------|----------------------|---------------------|
| WEG15         | 0.8                  | 1.4                 |
| WEG20         | 1.5                  | 2.4                 |
| WEG25         | 2.8                  | 4.6                 |
| WEG30         | 3.7                  | 6.3                 |


### Lubrication frequency

Check the grease every 100 km or every 3-6 months.

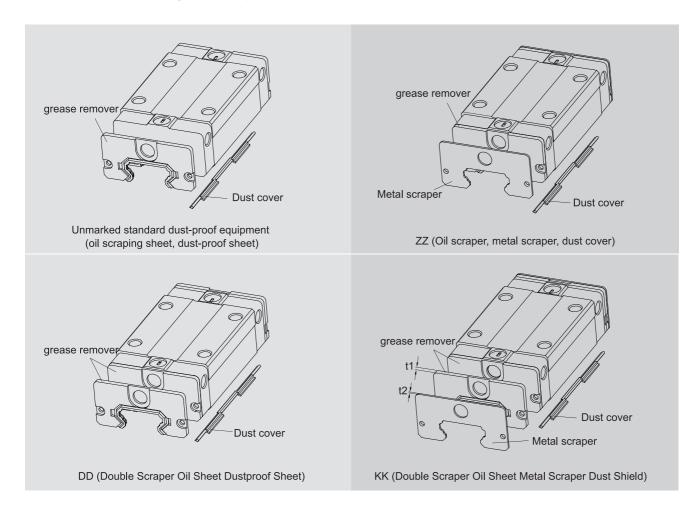
### (2)Lubricating oil

It is recommended to use lubricant with a viscosity of about 30~150 cSt to lubricate linear guides. Customers can inform us if they need oil lubrication, and the linear guides will not be filled with grease before shipment.

### Oil pipe joint type



### oFuel supply rate


Table 2–11 Fuel Supply Rate

| Specification | Fuel supply rate<br>(cm³/hr) |
|---------------|------------------------------|
| WEG15         | 0.1                          |
| WEG20         | 0.133                        |
| WEG25         | 0.167                        |
| WEG30         | 0.2                          |

## 8. Dust-proof equipment

### (1)Standard dustproof equipment code

If there is a need for the following dust-proof equipment, please add the code after the product model.



### (2)Dustproof equipment instructions

- Oil scraper and bottom dust-proof strip
   Preventing processed metal shavings or dust particles from entering the slide block can damage the surface of the rail and reduce the lifespan of the linear guide.
- Double-layer oil scraper
   Double chip removal effect, even in heavy cutting environments, foreign objects are completely expelled outside the slider.

Table 2-12 Oil Scraper Plate

| Specification | Thickness(t1) (mm) |
|---------------|--------------------|
| WEG 15 ES     | 2                  |
| WEG 20 ES     | 2                  |
| WEG 25 ES     | 2                  |
| WEG 30 ES     | 2                  |

## Low-assembly ball linear guide rail

### WEG series

#### Metal scraper

Can isolate high-temperature iron filings or processing sparks, and eliminate large volume impurities.

Table 2-13 Metal Scraper

| Specification | Thickness(t2) (mm) |
|---------------|--------------------|
| WEG 15 SC     | 0.8                |
| WEG 20 SC     | 0.8                |
| WEG 25 SC     | 1                  |
| WEG 30 SC     | 1                  |

#### Rail bolt cover

To prevent cutting powder or foreign objects from entering the interior of the slide block through the bolt holes and affecting precision, the customer must insert the bolt caps into the bolt holes when installing the guide rails. Each guide rail is supplied with a bolt cap upon leaving the factory.

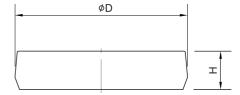



Table 2-14 Guide Dust Cover

| Rail specifications | Install the screws | Diameter(D)<br>(mm) | Thickness(H)<br>(mm) |
|---------------------|--------------------|---------------------|----------------------|
| WEGR15R             | M3                 | 6.15                | 1.2                  |
| WEGR20R             | M5                 | 9.65                | 2.5                  |
| WEGR25R             | M6                 | 11.15               | 2.5                  |
| WEGR30R             | M6                 | 11.15               | 2.5                  |
| WEGR15U             | M4                 | 7.65                | 1.1                  |
| WEGR30U             | M8                 | 14.20               | 3.5                  |

### (3)The total length of the slider for each dust-proof code

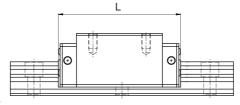



Table 2-15 Total Length of the Slider

Unit: mm

| Specification | Total length of the slider(L |              |              |              |  |  |
|---------------|------------------------------|--------------|--------------|--------------|--|--|
| Specification | SS                           | ZZ           | DD           | KK           |  |  |
| WEG15S        | 40.1(42.5)                   | 41.7(46.1)   | 44.1(46.5)   | 45.7(50.1)   |  |  |
| WEG15C        | 56.8(59.2)                   | 58.4(62.8)   | 60.8(63.2)   | 62.4(66.8)   |  |  |
| WEG20S        | 50.0(54.0)                   | 51.6(57.6)   | 54.0(58.0)   | 55.6(61.6)   |  |  |
| WEG20C        | 69.1(73.1)                   | 70.7(76.7)   | 73.1(77.1)   | 74.7(80.7)   |  |  |
| WEG25S        | 59.1(63.1)                   | 61.1(67.1)   | 63.1(67.1)   | 65.1(71.1)   |  |  |
| WEG25C        | 82.6(86.6)                   | 84.6(90.6)   | 86.6(90.6)   | 88.6(94.6)   |  |  |
| WEG30S        | 69.5(73.5)                   | 71.5(77.5)   | 73.5(77.5)   | 75.5(81.5)   |  |  |
| WEG30C        | 98.1(102.1)                  | 100.1(106.1) | 102.1(106.1) | 104.1(110.1) |  |  |

Note: ( ) is the maximum length of the slider, including screws, oil scraper lip, etc.

## 9, Frictional force

This resistance value is the maximum resistance of a single oil scraper.

Table 2-16 WEG Series Oil Scraper Resistance

| Specification | Oil scraper resistance N(kgf) |
|---------------|-------------------------------|
| WEG15         | 0.98(0.1)                     |
| WEG20         | 0.98(0.1)                     |
| WEG25         | 0.98(0.1)                     |
| WEG30         | 1.47(0.15)                    |

Note: 1kgf=9.81N

## 10. Installation plane error

The WHG series is an arc two-point contact linear guide, and its auto-aligning feature can absorb slight errors in the installation surface without affecting the smoothness of linear motion. The allowable error values for the installation plane are indicated in the table below:

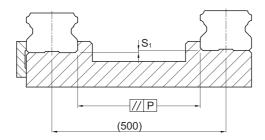



Table 2-17 Allowable Parallelism Tolerance (P)

Unit: mm

| Specification | Preloading Level |    |    |
|---------------|------------------|----|----|
| Specification | Z0               | ZA | ZB |
| WEG15         | 25               | 18 | -  |
| WEG20         | 25               | 20 | 18 |
| WEG25         | 30               | 22 | 20 |
| WEG30         | 40               | 30 | 27 |

Table 2-18 Allowable vertical and horizontal level deviation(S1)

Unit: mm

| Specification | Preloading Leve |     |    |  |
|---------------|-----------------|-----|----|--|
| Specification | Z0              | ZA  | ZB |  |
| WEG15         | 130             | 85  | -  |  |
| WEG20         | 130             | 85  | 50 |  |
| WEG25         | 130             | 85  | 70 |  |
| WEG30         | 170             | 110 | 90 |  |

Note: Allowable values are proportional to the distance between axes.

### 11, Installation Precautions

### (1)Installation shoulder height and bevel

When installing linear guides, it is essential to pay attention to the condition of the installation face shoulder. If the chamfer is too large or there are protruding areas, it can easily lead to poor accuracy of the linear guide, while too high a height may interfere with the slider. Therefore, if the installation face shoulder can be adjusted according to the recommended requirements, poor installation accuracy can be eliminated.

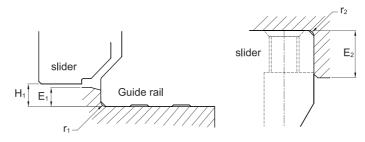



Table 2-19 Shoulder Height and Chamfer

| Specification | Maximum radius of the end of the guide rail r <sub>1</sub> (mm) | Maximum corner radius of the slider endr <sub>1</sub> (mm) | Rail end shoulder<br>height E₁(mm) | Slider endShoulder<br>height E <sub>2</sub> (mm) | Net height of the slider operation H <sub>1</sub> (mm) |
|---------------|-----------------------------------------------------------------|------------------------------------------------------------|------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| WEG15         | 0.5                                                             | 0.5                                                        | 2.7                                | 5.0                                              | 4.5                                                    |
| WEG20         | 0.5                                                             | 0.5                                                        | 5.0                                | 7.0                                              | 6.0                                                    |
| WEG25         | 1.0                                                             | 1.0                                                        | 5.0                                | 7.5                                              | 7.0                                                    |
| WEG30         | 1.0                                                             | 1.0                                                        | 7.0                                | 7.0                                              | 10.0                                                   |

### (2) Torque value of the guide rail assembly screws

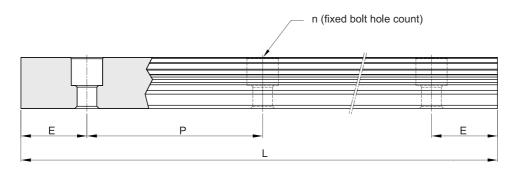

Whether the guide rails are tightly locked to the reference surface affects the accuracy of the linear guide rails significantly. Therefore, to ensure that each screw can be tightened, it is recommended to use the following torque values for assembling the screws.

Table 2-20 Torque Values

| Charification | Caraw ana diffications | Torque valueN-cm(kgf- | cm)              |                         |
|---------------|------------------------|-----------------------|------------------|-------------------------|
| Specification | Screw specifications   | Iron material         | Casting material | Aluminum alloy material |
| WEG15         | M3x0.5Px16L            | 186(19)               | 127(13)          | 98(10)                  |
| WEG20         | M5x0.8Px16L            | 883(90)               | 588(60)          | 441(45)                 |
| WEG25         | M6x1Px20L              | 1373(140)             | 921(94)          | 686(70)                 |
| WEG30         | M6x1Px25L              | 1373(140)             | 921(94)          | 686(70)                 |

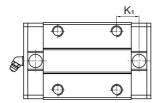
## 12. Standard length and maximum length of a single rail

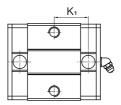
WODTOP has standard length rail inventory to meet customer needs. If customers order non-standard length rails, the dimension of the end face distance E should preferably not exceed 1/2P, to prevent instability at the end of the rail after assembly caused by an oversized dimension E, which would reduce the accuracy of the linear rail.

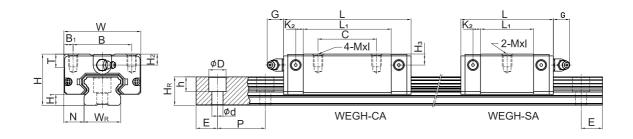


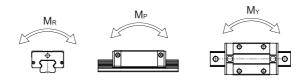
L=(n-1)xP+2xE .... Eq.2.1

- L: Total length of the rail(mm)
- n: Number of bolt holes
- P: Bolt hole spacing(mm)
- E: Distance from bolt hole to the end face(mm)


Table 2-21 Track Length Unit: mm

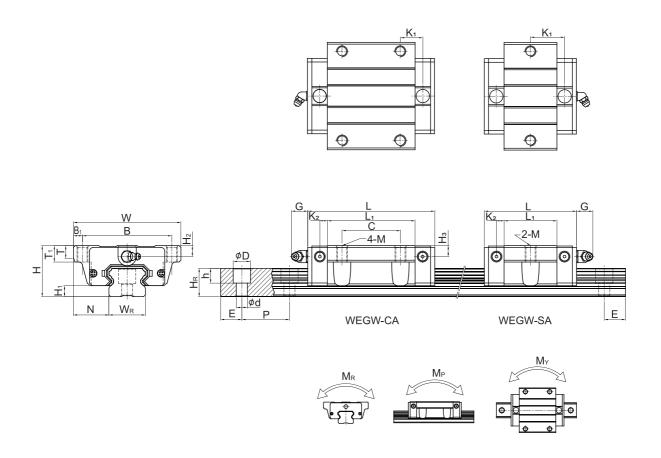

| Project                                 | WEGR15    | WEGR20    | WEGR25    | WEGR30    |
|-----------------------------------------|-----------|-----------|-----------|-----------|
|                                         | 160(3)    | 220(4)    | 220(4)    | 280(4)    |
|                                         | 220(4)    | 280(5)    | 280(5)    | 440(6)    |
|                                         | 280(5)    | 340(6)    | 340(6)    | 600(8)    |
|                                         | 340(6)    | 460(8)    | 460(8)    | 760(10)   |
| Standard length L(n)                    | 460(8)    | 640(11)   | 640(11)   | 1,000(13) |
|                                         | 640(11)   | 820(14)   | 820(14)   | 1,640(21) |
|                                         | 820(14)   | 1,000(17) | 1,000(17) | 2,040(26) |
|                                         |           | 1,240(21) | 1,240(21) | 2,520(32) |
|                                         |           | 1,600(27) | 1,600(27) | 3,000(38) |
| Spacing(P)                              | 60        | 60        | 60        | 80        |
| Standard Spacing (E <sub>s</sub> )      | 20        | 20        | 20        | 20        |
| Maximum length of standard end distance | 4,000(67) | 4,000(67) | 4,000(67) | 3,960(50) |
| Maximum length                          | 4,000     | 4,000     | 4,000     | 4,000     |


- Note: 1. The general tolerance for the E dimension of the guide rail is  $0.5 \sim -0.5$  mm, while the tolerance for the guide rail threaded components' pitch E dimension is stricter at  $0 \sim -0.3$  mm.
  - 2. The maximum length of the standard pitch refers to the maximum length of the guide rail when both the left and right pitches are the standard pitch.
  - 3. If the customer requires a different E dimension, please contact WODTOP.


## 13, WEG Series Linear Guide Size Table

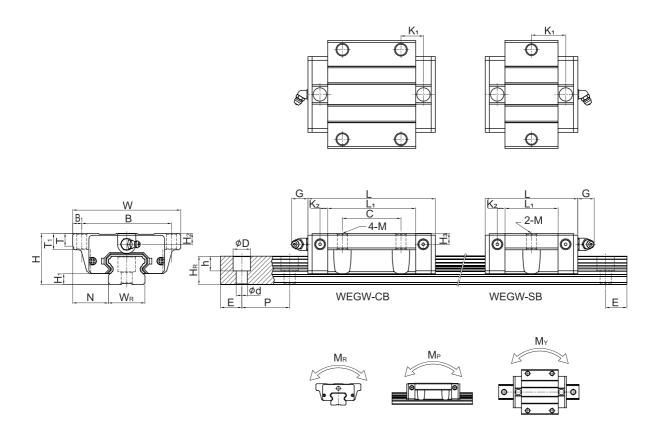
(1)WEGH-SA / WEGH-CA





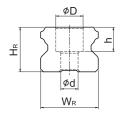


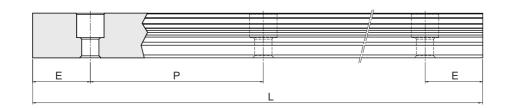




|          |    |     | nen<br>nm) |      | Slider size(mm) |                |    |                |      |                |                |     | Guide rail dimensions fixed the g |        |                |   |         |        |     | Size of the<br>fixed bolt for<br>the guide rai | Basic Motion<br>amount Fixed | Basic static rated load |      | issible<br>nomer | Weight |                     |                |                        |      |      |                         |
|----------|----|-----|------------|------|-----------------|----------------|----|----------------|------|----------------|----------------|-----|-----------------------------------|--------|----------------|---|---------|--------|-----|------------------------------------------------|------------------------------|-------------------------|------|------------------|--------|---------------------|----------------|------------------------|------|------|-------------------------|
| Model    |    |     |            | W    | В               | B <sub>1</sub> | С  | L <sub>1</sub> | L    | K <sub>1</sub> | K <sub>2</sub> | G   | MxI                               | Т      | H <sub>2</sub> |   |         |        | V   |                                                | ')                           |                         |      | (mm)             |        | C <sub>0</sub> (kN) | M <sub>R</sub> | M <sub>P</sub><br>kN-m |      |      | r Guide<br>rail<br>kg/m |
| WEGH15SA | 24 | 15  | 0.5        | 34   | 26              | 4              | -  | 23.1           | 40.1 | 14.8           | 2 5            | E 7 | MAVE                              | c      | 5.5            | c | 15      | 10 5   | c   | 1 5                                            | 2 5                          | 60                      | 20   | M3x16            | 5.35   | 9.40                | 0.08           | 0.04                   |      | 0.09 |                         |
| WEGH15CA | 24 | 4.0 | 9.0        | 34   | 20              | 4              | 26 | 39.8           | 56.8 | 10.15          |                | 5.7 | M4x6                              | 1400 0 | 0.0            | 0 | 15 12.5 | 12.3   | 0   |                                                | 0.0                          | 00                      | 20   | IVIOX 10         | 7.83   | 16.19               | 0.13           | 0.10                   | 0.10 | 0.15 | 1.25                    |
| WEGH20SA | 28 | 6   | 11         | 42   | 32              | 5              | -  | 29             | 50   | 18.75          | 4.15           | 12  | M5x7                              | 7.5    | 6              | 6 | 20      | 15.5   | 0.5 | 2.5                                            | 6                            | 60                      | 20   | M5x16            | 7.23   | 12.74               | 0.13           | 0.06                   | 0.06 | 0.15 | 2.08                    |
| WEGH20CA | 20 | U   | - ' '      | 42   | 32              | J              | 32 | 48.1           | 69.1 |                |                | 12  | . IVIOA1                          | 1.0    | U              | U | 20      | 10.0   | 3.0 | 0.0                                            | U                            | 00                      | 20   | WIOX TO          | 10.31  | 21.13               | 0.22           | 0.16                   | 0.16 | 0.24 | 2.00                    |
| WEGH25SA | 33 | 7   | 12 5       | 5 48 | 35              | 6.5            | -  | 35.5           | 59.1 | 21.9           | 4,55           | 12  | M6x9                              | 8      | 8              | 8 | 23      | 18     | 11  | 9                                              | 7                            | 60                      | 20   | M6x20            | 11.40  | 19.50               | 0.23           | 0.12                   | 0.12 | 0.25 | 2.67                    |
| WEGH25CA | 33 | '   | 12.0       | 7 40 | 55              | 0,0            | 35 | 59             | 82.6 | 16.15          |                | 12  | IVIOA                             | X9 0   | U              | U | 23      | 10     | "   | J                                              | '                            | 00                      | 20   | IVIOAZU          | 16.27  | 32.40               | 0.38           | 0.32                   | 0.32 | 0.41 | 2,01                    |
| WEGH30SA | 10 | 10  | 16         | 60   | 40              | 10             | -  | 41.5           | 69.5 | 26.75          | 6              | 12  | M8x12                             | 9      | 8              | 9 | 28      | 23     | 11  | 9                                              | 7                            | 80                      | 20   | M6x25            | 16.42  | 28.10               | 0.40           | 0.21                   | 0.21 | 0.45 | 4.35                    |
| WEGH30CA | 42 | 10  | 10         | 00   | 40              | 10             |    | 70.1           | 98.1 | 21.05          |                | 12  | IVIOX 12                          | 8X1Z 9 |                | ð | 20      | 0 23 1 |     | 9                                              | '                            | 00                      | J 20 | WOXZO            | 23.70  | 47.46               | 0.68           | 0.55                   | 0.55 | 0.76 |                         |

## (2)WEGW-SA/WEGW-CA

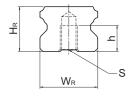


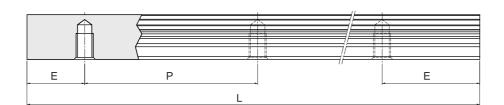

|          |      | mpo<br>ze(i |      |       |       |       |    |                | Slide | er si          | ze(n           | nm) | )      |     |                |                |                | Gι | uide | rai | l di | me  | nsio | ons | Size of the fixed bolt for the guide ra | Basic Motion<br>amount Fixed<br>load | Basic static rated load |                | nissible<br>momer |                            | We    | eight        |
|----------|------|-------------|------|-------|-------|-------|----|----------------|-------|----------------|----------------|-----|--------|-----|----------------|----------------|----------------|----|------|-----|------|-----|------|-----|-----------------------------------------|--------------------------------------|-------------------------|----------------|-------------------|----------------------------|-------|--------------|
| Model    |      | - (         |      | _     |       |       |    |                |       |                |                |     |        |     |                |                |                |    |      | (1  | mm   | 1)  |      |     |                                         | load                                 |                         | $M_{\text{R}}$ | $M_{P}$           | $M_{\scriptscriptstyle Y}$ | slide | r Guide      |
|          | Н    | Н           | 1 N  | W     | / B   | В     | С  | L <sub>1</sub> | L     | K <sub>1</sub> | K <sub>2</sub> | G   | М      | Т   | T <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | WR | HR   | D   | h    | d   | Ρ    | Ε   | (mm)                                    | C(kN)                                | C <sub>0</sub> (kN)     | kN-m           | kN-m              | kN-m                       | kg    | rail<br>kg/m |
| WEGW15SA | 2/   | 1 5         | 1.0  | 5 52  | 1.    | 5.5   |    | 23.1           | 40.1  | 14.8           | 3.5            | 5.7 | M5     | 5   | 7              | 5.5            | 6              | 15 | 12.5 | 6   | 15   | 3.5 | 60   | 20  | M3x16                                   | 5.35                                 | 9.40                    | 0.08           | 0.04              |                            | 0.12  |              |
| WEGW15CA | 24   | 4,0         | ) 10 | J J2  | 4     | J.    | 26 | 39.8           | 56.8  | 10.15          | 0.0            | J.1 | IVIJ   | J   | ı              | 0.0            | U              | 13 | 12,3 | U   | 4.0  | 3.3 | 00   | 20  | IVIOX TO                                | 7.83                                 | 16.19                   | 0.13           | 0.10              | 0.10                       | 0.21  | 1.25         |
| WEGW20SA | 20   | 6           | 10   | 5 59  | 10    | . 5   | -  | 29             | 50    | 18.75          | 4.15           | 12  | M6     | 7   | ۵              | 6              | 6              | 20 | 15.5 | 0.5 | 2.5  | 6   | 60   | 20  | M5x16                                   | 7.23                                 | 12.74                   | 0.13           | 0.06              | 0.06                       | 0.19  | 2.08         |
| WEGW20CA | 20   | U           | 10   | J     | 40    | , ,   | 32 | 48.1           | 69.1  |                | 4.10           | 12  | IVIO   | '   | 3              | U              | U              | 20 | 10.0 | 3.3 | 0.0  | U   | 00   | 20  | IVIOX TO                                | 10.31                                | 21.13                   | 0.22           | 0.16              | 0.16                       | 0.32  | 2.00         |
| WEGW25SA | 33   | 7           | 2    | 72    | . 60  | 6.5   |    | 35.5           | 59.1  | 21.9           | 4.55           | 12  | MR     | 7.5 | 10             | 8              | 8              | 23 | 18   | 11  | 9    | 7   | 60   | 20  | M6x20                                   | 11.40                                | 19.50                   | 0.23           | 0.12              | 0.12                       | 0.35  | 2.67         |
| WEGW25CA | - 33 | 1           | ۷,   | ) / ( | 00    | , 0.0 | 35 | 59             | 82.6  | 16.15          |                | 12  | IVIO   | 1.3 | 10             | 0              | 0              | 23 | 10   | "   | J    | '   | 00   | 20  | IVIOXZU                                 | 16.27                                | 32.40                   | 0.38           | 0.32              | 0.32                       | 0.59  | 2.01         |
| WEGW30SA | 42   | 10          | , ,  | 90    | 7'    | 0 0   | -  | 41.5           | 69.5  | 26.75          | c              | 10  | M10    | 7   | 10             | 8              | 9              | 28 | 22   | 11  | 9    | 7   | 00   | 20  | M6x25                                   | 16.42                                | 28.10                   | 0.40           | 0.21              | 0.21                       | 0.62  | 4.35         |
| WEGW30CA | 42   | 10          | 3    | 90    | 1 / 2 | 2 9   |    | 70.1           | 98.1  | 21.05          | 0              | IZ  | IVI IU | 1   | 10             | 0              | 9              | 20 | 23   | Ш   | 9    | 1   | 00   | 20  | IVIOXZO                                 | 23.70                                | 47.46                   | 0.68           | 0.55              | 0.55                       | 1.04  | 4.30         |


## (3)WEGW-SB/WEGW-CB



|          |    |     | ner<br>mm) |      |      |     |    |      | Slide | er siz         | ze(n           | nm) |            |     |                |                |    | Gu             | iide           | rai | l dii | mer | nsic | ons | Size of the fixed bolt for the guide rai | Basic Motion<br>amount Fixed<br>load | Basic static rated load |                | nissible<br>momer |       | We    | eight        |
|----------|----|-----|------------|------|------|-----|----|------|-------|----------------|----------------|-----|------------|-----|----------------|----------------|----|----------------|----------------|-----|-------|-----|------|-----|------------------------------------------|--------------------------------------|-------------------------|----------------|-------------------|-------|-------|--------------|
| Model    |    | ,   | ,          |      |      |     |    |      |       |                |                |     |            |     |                |                |    |                |                | (1  | mm    | 1)  |      |     |                                          | 1000                                 |                         | $M_{\text{R}}$ | M <sub>P</sub>    | $M_Y$ | slide | r Guide      |
|          |    |     |            |      | / В  |     |    |      | L     | K <sub>1</sub> | K <sub>2</sub> | G   | M          | Т   | T <sub>1</sub> | H <sub>2</sub> | Н3 | W <sub>R</sub> | H <sub>R</sub> | D   | h     | d   | Ρ    | Ε   | (mm)                                     | C(kN)                                | C <sub>0</sub> (kN)     | kN-m           | kN-m              | kN-m  | kg    | rail<br>kg/m |
| WEGW15SB | 2/ | 11  | 12         | 5 50 | / /1 | 5.5 | -  | 23.1 | 40.1  | 14.8           | 3.5            | 5.7 | Ø4.5       | 5   | 7              | 5.5            | 6  | 15             | 12.5           | 6   | 15    | 3.5 | 60   | 20  | M3x16                                    | 5.35                                 | 9.40                    | 0.08           |                   | 0.04  |       |              |
| WEGW15CB | 24 | 7.0 | 10.        | 0 02 | . 71 | 0.0 | 26 | 39.8 | 56.8  | 10.15          | 0.0            | 0.1 | Y7.0       | J   | '              | 0.0            | U  | 10             | 12.0           | U   | 4.0   | 0.0 | 00   | 20  | IVIOXIO                                  | 7.83                                 | 16.19                   | 0.13           | 0.10              | 0.10  | 0.21  | 1.25         |
| WEGW20SB | 28 | 6   | 10         | 5 50 | 49   | 5   | -  | 29   | 50    | 18.75          | 4,15           | 12  | Ø5.5       | 7   | ۵              | 6              | 6  | 20             | 15.5           | 0.5 | 25    | 6   | 60   | 20  | M5x16                                    | 7.23                                 | 12.74                   | 0.13           | 0.06              | 0.06  | 0.19  | 2.08         |
| WEGW20CB | 20 | U   | 10.        | 0 00 | 40   | J   |    | 48.1 |       | 12.3           | 4,10           | 12  | ¥0,0       | '   | J              | U              | U  | 20             | 10,0           | 3.3 | 0,5   | U   | 00   | 20  | IVIOATO                                  | 10.31                                | 21,13                   | 0.22           | 0.16              | 0.16  | 0.32  |              |
| WEGW25SB | 33 | 7   | 25         | 73   | 60   | 6.5 | -  | 35.5 | 59.1  | 21.9           | 4.55           | 12  | <b>φ</b> 7 | 75  | 10             | 8              | ρ  | 23             | 18             | 11  | a     | 7   | 60   | 20  | M6x20                                    | 11.40                                | 19.50                   | 0.23           | 0.12              | 0.12  | 0.35  | 2.67         |
| WEGW25CB | 00 | ,   | 20         | 10   | , 00 | 0.0 |    | 59   | 82.6  |                |                | 12  | ۲۱         | 1.0 | 10             | U              | U  | 20             | 10             | "   | 3     | '   | 00   | 20  | IVIOAZO                                  | 16.27                                | 32.40                   | 0.38           | 0.32              | 0.32  | 0.59  | 2.01         |
| WEGW30SB | 12 | 10  | 21         | or   | 72   | ۵   | -  | 41.5 | 69.5  | 26.75          | 6              | 12  | ø9         | 7   | 10             | Q              | 9  | 28             | 22             | 11  | 9     | 7   | 80   | 20  | M6x25                                    | 16.42                                | 28.10                   | 0.40           | 0.21              | 0.21  | 0.62  | 4,35         |
| WEGW30CB | 42 | 10  | 01         | 30   | 1 12 | 9   |    | 70.1 |       |                | 0              | 12  | ΨĐ         | '   | 10             | 0              | J  | 20             | 23             | 11  | J     | 1   | 00   | 20  | IVIUXZJ                                  | 23.70                                | 47.46                   | 0.68           | 0.55              | 0.55  | 1.04  | 4.00         |


### (4)Locking type (enlarged bolt hole diameter) rail size table

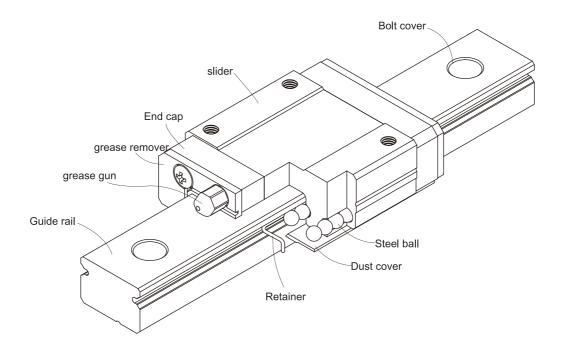





|         |               | Guide rail din | nensions(mm    | )   |     |     |    |    | Weight |
|---------|---------------|----------------|----------------|-----|-----|-----|----|----|--------|
| Wodel   | bolt size(mm) | $W_{R}$        | H <sub>R</sub> | D   | h   | d   | Р  | Е  | (kg/m) |
| WEGR15U | M4x16         | 15             | 12.5           | 7.5 | 5.3 | 4.5 | 60 | 20 | 1.23   |
| WEGR30U | M8x25         | 28             | 23             | 14  | 12  | 9   | 80 | 20 | 4.23   |

### (5)Locking rail size table



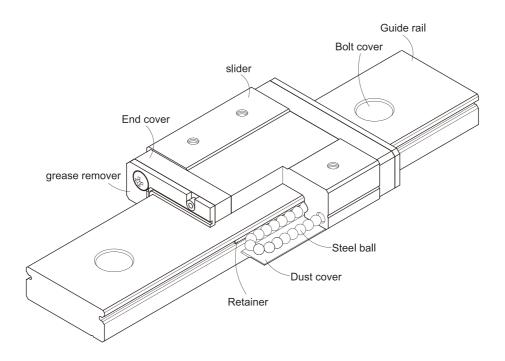



| Madal   | Guide rail dime | ensions (mm) |          |    |    |    | Weight |
|---------|-----------------|--------------|----------|----|----|----|--------|
| Model   | W <sub>R</sub>  | HR           | S        | h  | Р  | Е  | (kg/m) |
| WEGR15T | 15              | 12.5         | M5x0.8P  | 7  | 60 | 20 | 1.26   |
| WEGR20T | 20              | 15.5         | M6x1P    | 9  | 60 | 20 | 2.15   |
| WEGR25T | 23              | 18           | M6x1P    | 10 | 60 | 20 | 2.79   |
| WEGR30T | 28              | 23           | M8x1.25P | 14 | 80 | 20 | 4.42   |

## 1. Characteristics and weight of WGN series linear guide rail

- 1. Small volume and lightweight, particularly suitable for use in miniature devices.
- 2. Adopts a Gothic four-point contact design, capable of bearing loads in all directions, with characteristics of high rigidity and high precision.
- 3. Specifications with a steel ball retainer design, allowing interchangeability within the limits of precision.

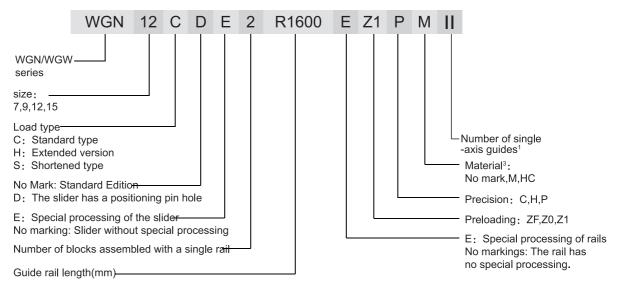
## 2. WGN ontology structure




- O Rolling loop system: slider, guide rail, end cap, steel balls, retainer (except for 3 specifications)
- O Lubrication system: The WGN15 end cover is equipped with an oil nozzle for customers to inject oil, while the WGN7, 9, and 12 have reserved oil injection holes on the side of the end cover, allowing oil or grease to be injected into the slider for lubrication.
- O Dustproof system: oil scraping blade (3 specifications available), dustproof sheet (9, 12, 15 specifications available), bolt cover (12, 15 specifications)

## 3. Features of the WGW series linear guide rail

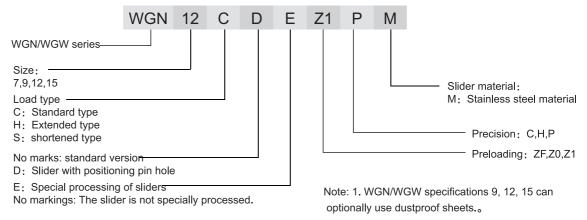
- 1. The design of the widened guide rail significantly enhances the torque load capacity and can be used with a single axis.
- 2. Using a Gothic arch four-point contact design, it can withstand loads from all directions, featuring strong rigidity and high precision.
- 3. The specifications with a steel ball retainer design have interchangeability within the allowed tolerance.


## 4. WGW ontology structure

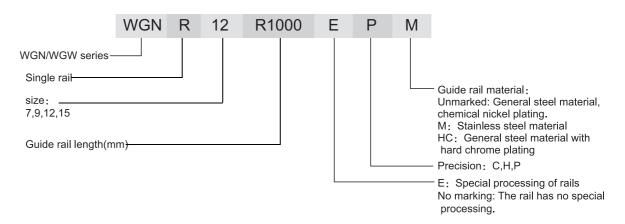


- O Rolling loop system: slider, guide rail, end cap, steel balls, retainer
- **O** Lubrication System: The end caps of WGW14 and WGW15 are equipped with oil nozzles for customer oil injection, while WGW3, 7, 9, and 12 reserve oil injection holes on the side of the end cap, allowing oil or grease to be injected into the internal slider for lubrication.
- O Dustproof system: oil scraper, dustproof plates (options in specifications 9, 12, 14, 15), bolt covers (specifications 12, 14, 15)

### 5. Product Specification Description


(1)Non-interchangeable linear guide rail product model




Note: 1. If only one guide rail is used, it is not written; two are marked as II, three are marked as III, and so on.
2. No marking: general steel material, chemical nickel plating.
M: stainless steel material, HC: general steel material, hard chrome plating.

### (2)Interchangeable linear guide rail product model

O Single slide block product model



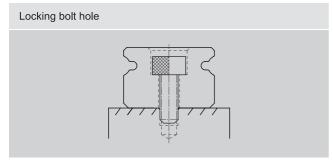
### O Single rail product model



## 6. WG series type

### (1)Slider type

WODTOP offers two types of linear guides: standard and wide, making it easy for customers to choose.


Table 3-1 Slider Type

| Туре             | Specification  | onshape | Height dimension (mm) | Guide<br>rail length<br>(mm) | Application device                                                                                                                              |
|------------------|----------------|---------|-----------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard<br>type | WGN-C<br>WGN-H |         | 8<br>↓<br>16          | 100<br>↓<br>2000             | <ul> <li>O Printer</li> <li>O Robotic arm</li> <li>O Electronic instruments<br/>and equipment</li> <li>O Semiconductor<br/>Equipment</li> </ul> |
| Wide type        | WGW-C          |         | 9<br>↓<br>16          | 100<br>↓<br>2000             |                                                                                                                                                 |

### (2)Guide rail type

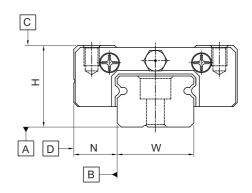

WODTOP provides locking screw hole guides for convenient installation and use by customers.

Table 3-2 Guide Type



## 7. Accuracy level

The precision of the WGN and WGW series of small guide rails is divided into three levels: ordinary, high, and precision. Customers can choose the appropriate precision based on their equipment accuracy requirements.



### (1)Non-interchangeable linear guide rail precision

The measurement of the assembly height H is based on the center position of the reference surface on the upper part of the slider, while the measurement of the assembly width N is based on the center position of the reference surface on the side of the slider.

Table 3-3 Precision Table Unit: mm

| Accuracy level                                                            | Regular level<br>(C) | Advanced<br>(H)     | Precision grade<br>(P) |
|---------------------------------------------------------------------------|----------------------|---------------------|------------------------|
| Permissible dimensional tolerance of height H                             | ±0.04                | ±0.02               | ±0.01                  |
| Permissible dimensional tolerance of width N                              | ±0.04                | ±0.025              | ±0.015                 |
| Mutual error of paired height H                                           | 0.03                 | 0.015               | 0.007                  |
| Mutual error of paired width N (reference track)                          | 0.03                 | 0.02                | 0.01                   |
| The traveling parallelism of slider C facing the surface of guide rail A. |                      | Walking parallelism |                        |
| The traveling parallelism of slider D facing the surface of guide rail B. |                      | Walking parallelism |                        |

### (2)Interchangeable linear guide rail accuracy

The accuracy of interchangeable linear guide rails in terms of paired height and width precision when the sliders are assembled on a single rail is the same as that of non-interchangeable linear guide rails. However, when assembled on different rails, due to height errors of the rails, the paired height and width accuracy is slightly inferior to that of non-interchangeable linear guide rails, while the walking parallelism accuracy is the same as that of non-interchangeable linear guide rails.

Table 3-4 Precision Table for Interchangeable Linear Guides

| Table 3-4 Precision Table for Interchangeable Linear Guides  Unit |                                                   |                      |                     |                        |  |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------------|----------------------|---------------------|------------------------|--|--|--|--|
| Accuracy lev                                                      | rel                                               | Regular level<br>(C) | Advanced<br>(H)     | Precision grade<br>(P) |  |  |  |  |
| Permissible (                                                     | dimensional tolerance of height H                 | ±0.04                | ±0.02               | ±0.01                  |  |  |  |  |
| Permissible (                                                     | dimensional tolerance of width N                  | ±0.04                | ±0.025              | ±0.015                 |  |  |  |  |
| 0:                                                                | Mutual error of height H                          | 0.03                 | 0.015               | 0.007                  |  |  |  |  |
| Single pair                                                       | Mutual error with a width of N                    | 0.03                 | 0.02                | 0.01                   |  |  |  |  |
| Mutual errors                                                     | s of plural supports paired at height H           | 0.07                 | 0.04                | 0.02                   |  |  |  |  |
| The traveling surface of g                                        | g parallelism of slider C facing the uide rail A. | Walking parallelism  |                     |                        |  |  |  |  |
| The traveling surface of g                                        | parallelism of slider D facing the uide rail B.   |                      | Walking parallelism |                        |  |  |  |  |

### WG series

## Miniature ball linear guide rails

### (3) Walking parallel precision

The walking parallelism of rail C to A and rail D to B is related to the accuracy and length of the rails, and their values are listed in the table below.

Table 3-5 Walking Parallelism

| Guide rail length | Accuracy leve | el  |     | Guide rail length | Accuracy leve | el  |     |
|-------------------|---------------|-----|-----|-------------------|---------------|-----|-----|
| (mm)              | (C)           | (H) | (P) | (mm)              | (C)           | (H) | (P) |
| 50 以下             | 12            | 6   | 2   | 1,000 ~ 1,200     | 25            | 18  | 11  |
| 50 ~ 80           | 13            | 7   | 3   | 1,200 ~ 1,300     | 25            | 18  | 11  |
| 80 ~ 125          | 14            | 8   | 3.5 | 1,300 ~ 1,400     | 26            | 19  | 12  |
| 125 ~ 200         | 15            | 9   | 4   | 1,400 ~ 1,500     | 27            | 19  | 12  |
| 200 ~ 250         | 16            | 10  | 5   | 1,500 ~ 1,600     | 28            | 20  | 13  |
| 250 ~ 315         | 17            | 11  | 5   | 1,600 ~ 1,700     | 29            | 20  | 14  |
| 315 ~ 400         | 18            | 11  | 6   | 1,700 ~ 1,800     | 30            | 21  | 14  |
| 400 ~ 500         | 19            | 12  | 6   | 1,800 ~ 1,900     | 30            | 21  | 15  |
| 500 ~ 630         | 20            | 13  | 7   | 1,900 ~ 2,000     | 31            | 22  | 15  |
| 630 ~ 800         | 22            | 14  | 8   | 2,000 ~           | 31            | 22  | 16  |
| 800 ~ 1,000       | 23            | 16  | 9   |                   |               |     |     |

### 8, Pre-stress

The WGN/WGW series offers three types of pre-pressure: standard gap, no pre-pressure, and light pre-pressure.

Table 3-6 Preloading Level

| Preloading Level      | mark | Pre-stress           | Applicable accuracy |
|-----------------------|------|----------------------|---------------------|
| ordinary gap          | ZF   | Precision gap 4~10µm | С                   |
| No pre-compression    | Z0   | 0                    | C~P                 |
| Light pre-compression | Z1   | 0.02C                | C~P                 |

Note: In the pre-stress, C is the dynamic rated load.

## 9. Installation plane error

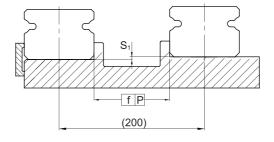



Table 3-8 Allowable Parallelism Tolerance (P)

Unit: µm

| Specification | Preloading         |               |               |
|---------------|--------------------|---------------|---------------|
| Specification | ZF pre-compression | Z0 preloading | Z1 preloading |
| WG7           | 3                  | 3             | 3             |
| WG9           | 4                  | 4             | 3             |
| WG12          | 9                  | 9             | 5             |
| WG15          | 10                 | 10            | 6             |

## Miniature ball linear guide rails

### WG series

Table 3-9 Allowable Vertical and Horizontal Level Tolerance(S<sub>1</sub>)

Unit: µm

| Specification | Preloading         |               |               |
|---------------|--------------------|---------------|---------------|
| Specification | ZF pre-compression | Z0 preloading | Z1 preloading |
| WG7           | 25                 | 25            | 3             |
| WG9           | 35                 | 35            | 6             |
| WG12          | 50                 | 50            | 12            |
| WG15          | 60                 | 60            | 20            |

Note: The allowable value is proportional to the distance between the axes.

Table 3-10 Flatness of the Installation Surface

Unit: µm

| Specification | Flatness error |
|---------------|----------------|
| WG7           | 0.025/200      |
| WG9           | 0.035/200      |
| WG12          | 0.050/200      |
| WG15          | 0.060/200      |

Note: The above values apply to the preloading level of ZF/Z0. If using Z1 level or two or more guide rails (including two), it is recommended to use values below 50% of the above.

### 10. Installation Precautions

### (1)Installation shoulder height and bevel

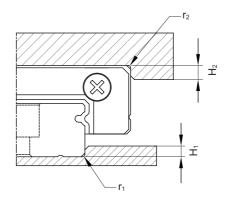


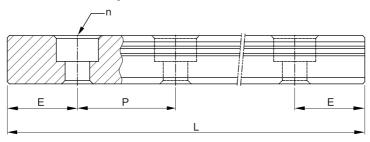

Table 3-11 Shoulder Height and Chamfer

| Specification | Maximum fillet radius of the shoulder r <sub>1</sub> (mm) | Maximum fillet radius of the shoulder r2(mm) | Guide rail shoulder height H <sub>1</sub> (mm) | Slider shoulder height $H_1(mm)$ |
|---------------|-----------------------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------|
| WGN7          | 0.2                                                       | 0.2                                          | 1.2                                            | 3                                |
| WGN9          | 0.2                                                       | 0.3                                          | 1.7                                            | 3                                |
| WGN12         | 0.3                                                       | 0.4                                          | 1.7                                            | 4                                |
| WGN15         | 0.5                                                       | 0.5                                          | 2.5                                            | 5                                |
| WGW7          | 0.2                                                       | 0.2                                          | 1.7                                            | 3                                |
| WGW9          | 0.3                                                       | 0.3                                          | 2.5                                            | 3                                |
| WGW12         | 0.4                                                       | 0.4                                          | 3                                              | 4                                |
| WGW15         | 0.4                                                       | 0.8                                          | 3                                              | 5                                |

### (2) Torque value of the guide rail assembly screws

Whether the guide rails are tightly locked to the reference surface affects the accuracy of the linear guide rails significantly.

Therefore, to ensure that each screw can be tightened, it is recommended to use the following torque values for assembling the screws.


Table 3-12 Torque Values

| Specification | Corour an acifications | Torque valueN-cm(kgf-cm) |                  |                         |  |  |
|---------------|------------------------|--------------------------|------------------|-------------------------|--|--|
|               | Screw specifications   | Iron material            | Casting material | Aluminum alloy material |  |  |
| WGN7          | M2x0.4Px16L            | 57(5.9)                  | 39.2(4)          | 29.4(3)                 |  |  |
| WGN9          | M3x0.5Px8L             | 186(19)                  | 127(13)          | 98(10)                  |  |  |
| WGN12         | M3x0.5Px8L             | 186(19)                  | 127(13)          | 98(10)                  |  |  |
| WGN15         | M3x0.5Px10L            | 186(19)                  | 127(13)          | 98(10)                  |  |  |
| WGW7          | M3x0.5Px6L             | 186(19)                  | 127(13)          | 98(10)                  |  |  |
| WGW9          | M3x0.5Px8L             | 186(19)                  | 127(13)          | 98(10)                  |  |  |
| WGW12         | M4x0.7Px8L             | 392(40)                  | 274(28)          | 206(21)                 |  |  |
| WGW15         | M4x0.7Px10L            | 392(40)                  | 274(28)          | 206(21)                 |  |  |

Note: 1kgf=9.81N

## 11. Standard length and maximum length of a single rail

WODTOP has a standard length stock of guide rails to meet customer demands. When customers order non-standard length guide rails, it is advisable that the end face distance E should not exceed 1/2P, to prevent instability at the rear end after assembly due to an excessively large E dimension, which would reduce the accuracy of the linear guide rail. It is also not advisable to use an excessively small E value (less than Emin) to avoid the risk of bolt hole breakage.



L=(n-1)xP+2xE .... Eq.2.4

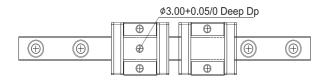
- L: Total length of the rail(mm)
- n: Number of bolt holes
- P: Bolt hole spacing(mm)
- E: Distance from bolt hole to the end face(mm)

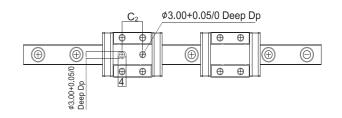
Table 3-13 Track Length Unit: mm

| Project                                 | WGNR7   | WGNR9    | WGNR12   | WGNR15   | WGWR5            | WGWR7            | WGWR9    | WGWR12   | WGWR15   |
|-----------------------------------------|---------|----------|----------|----------|------------------|------------------|----------|----------|----------|
|                                         | 40(3)   | 55(3)    | 70(3)    | 70(2)    | 50(3)            | 80(3)            | 80(3)    | 110(3)   | 110(3)   |
|                                         | 55(4)   | 75(4)    | 95(4)    | 110(3)   | 70(4)            | 110(4)           | 110(4)   | 150(4)   | 150(4)   |
|                                         | 70(5)   | 95(5)    | 120(5)   | 150(4)   | 90(5)            | 140(5)           | 140(5)   | 190(5)   | 190(5)   |
|                                         | 85(6)   | 115(6)   | 145(6)   | 190(5)   | 110(6)           | 170(6)           | 170(6)   | 230(6)   | 230(6)   |
| Standard length L(n)                    | 100(7)  | 135(7)   | 170(7)   | 230(6)   | 130(7)           | 2000(7)          | 200(7)   | 270(7)   | 270(7)   |
|                                         | 130(9)  | 155(8)   | 195(8)   | 270(7)   | 150(8)           | 260(9)           | 230(8)   | 310(8)   | 310(8)   |
|                                         |         | 175(9)   | 220(9)   | 310(8)   | 170(9)           |                  | 260(9)   | 350(9)   | 350(9)   |
|                                         |         | 195(10)  | 245(10)  | 350(9)   |                  |                  | 290(10)  | 390(10)  | 390(10)  |
|                                         |         | 275(14)  | 270(11)  | 390(10)  |                  |                  | 350(14)  | 430(11)  | 430(11)  |
|                                         |         | 375(19)  | 320(13)  | 430(11)  |                  |                  | 500(19)  | 510(13)  | 510(13)  |
|                                         |         |          | 370(15)  | 470(12)  |                  |                  | 710(24)  | 590(15)  | 590(15)  |
|                                         |         |          | 470(19)  | 550(14)  |                  |                  | 860(29)  | 750(19)  | 750(19)  |
|                                         |         |          | 570(23)  | 670(17)  |                  |                  |          | 910(23)  | 910(23)  |
|                                         |         |          | 695(28)  | 870(22)  |                  |                  |          | 1070(27) | 1070(27) |
| Spacing(P)                              | 15      | 20       | 25       | 40       | 20               | 30               | 30       | 40       | 40       |
| Standard Spacing(E <sub>S</sub> )       | 5       | 7.5      | 10       | 15       | 5                | 10               | 10       | 15       | 15       |
| Maximum length of standard end distance | 595(40) | 1195(60) | 1195(80) | 1990(50) | 250(13)          | 590(20)          | 1970(66) | 1990(50) | 1990(50) |
| Maximum length                          | 600     | 12005    | 2000     | 2000     | 250 <sup>4</sup> | 600 <sup>6</sup> | 2000     | 2000     | 2000     |

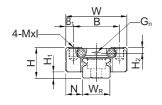
Note: 1. The general tolerance for dimension E of the guide rail is  $0.5\sim-0.5$ mm, while the tolerance for the distance E of the threaded end of the guide rail is stricter at  $0\sim-0.3$ mm.

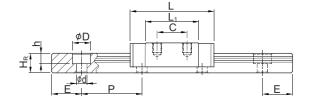
<sup>2.</sup> The maximum length of the standard distance refers to the maximum length of the guide rail when both the left and right distances are standard distances.


<sup>3.</sup> WGNR5 and WGWR5 are only available in stainless steel. 4. The maximum length provided for WGNR9 stainless steel guide rails is 1200mm; WGNR9 general steel guide rails provide a maximum length of 1000mm. 5. The maximum length provided for WGWR7 stainless steel guide rails is 600mm; WGWR7 general steel guide rails provide a maximum length of 2000mm. 6. If customers require different E values, please contact WODTOP.

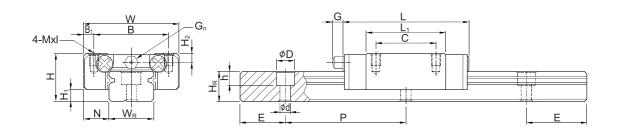

# 12. WGN/WGW series linear guide rail size table

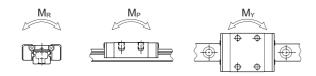
#### (1)WGN-S/WGN-C/WGN-H


#### WGN-S,WGN-SD





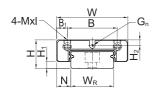


#### WGN7,WGN9,WGN12

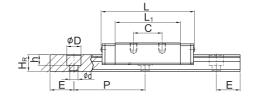




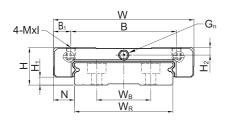
#### WGN15

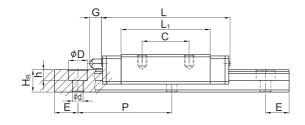


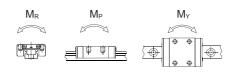




### (1)WGN-S/WGN-C/WGN-H

| Model    |    | npoi<br>size<br>mm | )   |    |    |                |    | SI             | ider | size | e(mn  | n)     |                |                |     |                | R     | tail s | ize(r | mm) |    |     | The size o<br>the fixed<br>bolts for<br>the rail | dynamia | Basic<br>static<br>rated <b>l</b> oad |       | missi<br>c moi |                                                         | Wei          | ight |
|----------|----|--------------------|-----|----|----|----------------|----|----------------|------|------|-------|--------|----------------|----------------|-----|----------------|-------|--------|-------|-----|----|-----|--------------------------------------------------|---------|---------------------------------------|-------|----------------|---------------------------------------------------------|--------------|------|
|          | Н  | H₁                 | N   | W  | В  | B <sub>1</sub> | С  | L <sub>1</sub> | L    | G    | Gn    | Mxl    | H <sub>2</sub> | C <sub>2</sub> | Dp  | W <sub>R</sub> | $H_R$ | D      | h     | d   | Р  | Е   | (mm)                                             | C(kN)   | C <sub>0</sub> (kN)                   |       |                | $\begin{array}{c} M_{\rm Y} \\ \text{kN-m} \end{array}$ | slider<br>kg | Id   |
| WGN 7S   |    |                    |     |    |    |                | 0  | 9.8            | 19   |      |       |        |                |                |     |                |       |        |       |     |    |     |                                                  | 0.73    | 0.88                                  | 3.45  | 2.03           | 2.03                                                    | 0.007        |      |
| WGN 7C   |    |                    |     |    |    |                | 8  | 13.5           | 22.5 |      |       |        |                | I              | 1   |                |       |        |       |     |    |     |                                                  | 0.98    | 1.24                                  | 4.70  | 2.84           | 2.84                                                    | 0.010        |      |
| WGN 7H   | 8  | 1.5                | 5   | 17 | 12 | 2.5            | 13 | 21.8           | 30.8 | _    | ø1 2  | M2x2.5 | 1.5            | ,              |     | 7              | 4.8   | 42     | 2.3   | 24  | 15 | 5   | M2x6                                             | 1.37    | 1.96                                  | 7.64  | 4.80           | 4.80                                                    | 0.015        | 0.22 |
| WGN 7SD  | Ů  | 1.0                |     | ., | 12 | 2.0            | 0  | 9.8            | 19   |      | 7112  | WEXE   | 1.0            |                | 2   |                | 110   | 112    | 2.0   | 211 | 10 |     | WIZAG                                            | 0.73    | 0.88                                  | 3.45  | 2.03           | 2.03                                                    | 0.007        | 0,2  |
| WGN 7CD  |    |                    |     |    |    |                | 8  | 13.6           | 22.8 |      |       |        |                | 8              | 2   |                |       |        |       |     |    |     |                                                  | 0.97    | 1.32                                  | 5.18  | 2.82           | 2.82                                                    | 0.01         |      |
| WGN 7HD  |    |                    |     |    |    |                | 13 | 21.9           | 31.1 |      |       |        |                | 13             | 2   |                |       |        |       |     |    |     |                                                  | 1.30    | 2.05                                  | 8.05  | 4.53           | 4.53                                                    | 0.015        |      |
| WGN 9S   |    |                    |     |    |    |                | 0  | 11.9           | 21.9 |      |       |        |                |                |     |                |       |        |       |     |    |     |                                                  | 1.2     | 1.3                                   | 6.77  | 4.38           | 4.38                                                    | 0.01         |      |
| WGN 9C   |    |                    |     |    |    |                | 10 | 18.9           | 28.9 |      |       |        |                | I              | 1   |                |       |        |       |     |    |     |                                                  | 1.86    | 2.55                                  | 11.76 | 7.35           | 7.35                                                    | 0.016        |      |
| WGN 9H   | 10 | 2                  | 5.5 | 20 | 15 | 2.5            | 16 | 29.9           | 39.9 |      | ø1.4  | M3x3   | 1.8            | ,              |     | 9              | 6.5   | 6      | 3.5   | 3.5 | 20 | 7.5 | M3x8                                             | 2.55    | 4.02                                  | 19.60 | 18.62          | 18.62                                                   | 0.026        | 0.3  |
| WGN 9SD  | 10 | _                  | 0.0 | 20 | 10 | 2.0            | 0  | 11.9           | 21.9 |      | , ,,, | MOAG   | 1.0            |                | 2.5 |                | 0.0   |        | 0.0   | 0.0 | 20 | 110 | MOXO                                             | 1.2     | 1.3                                   | 6.77  | 4.38           | 4.38                                                    | 0.01         | 0.0  |
| WGN 9CD  |    |                    |     |    |    |                | 10 | 19             | 29   |      |       |        |                | 10             | 2.5 |                |       |        |       |     |    |     |                                                  | 1.8     | 2.34                                  | 12.19 | 6.99           | 6.99                                                    | 0.016        |      |
| WGN 9HD  |    |                    |     |    |    |                | 16 | 29             | 39   |      |       |        |                | 16             | 2.5 |                |       |        |       |     |    |     |                                                  | 2.45    | 3.64                                  | 18.95 | 10.67          | 10.67                                                   | 0.025        |      |
| WGN 12S  |    |                    |     |    |    |                | 0  | 13             | 27   |      |       |        |                |                |     |                |       |        |       |     |    |     |                                                  | 1.92    | 2.03                                  | 13.5  | 7.53           | 7.53                                                    | 0.023        |      |
| WGN 12C  |    |                    |     |    |    |                | 15 | 21.7           | 34.7 |      |       |        |                | I              | 1   |                |       |        |       |     |    |     |                                                  | 2.84    | 3.92                                  | 25.48 | 13.72          | 13.72                                                   | 0.034        |      |
| WGN 12H  | 13 | 3                  | 7.5 | 27 | 20 | 3.5            | 20 | 32.4           | 45.4 | _    | ø2    | M3x3.5 | 25             | ,              |     | 12             | 8     | 6      | 4.5   | 3.5 | 25 | 10  | M3x8                                             | 3.72    | 5.88                                  | 38.22 | 36.26          | 36.26                                                   | 0.054        | 0.6  |
| WGN 12SD |    | Ĭ                  |     |    |    |                | 0  | 13             | 27   |      |       |        |                |                | 3   |                |       | Ť      |       | ••  |    |     |                                                  | 1.92    | 2.03                                  | 13.5  | 7.53           | 7.53                                                    |              |      |
| WGN 12CD |    |                    |     |    |    |                | 15 | 20.6           | 34.6 |      |       |        |                | 14             | 3   |                |       |        |       |     |    |     |                                                  | 2.67    | 3.25                                  | 21.6  | 11.85          | 11.85                                                   | 0.035        |      |
| WGN 12HD |    |                    |     |    |    |                | 20 | 33.6           | 47.6 |      |       |        |                | 20             | 3   |                |       |        |       |     |    |     |                                                  | 3.54    | 4.88                                  | 32.39 | 18.34          | 18.34                                                   | 0.058        |      |
| WGN 15S  |    |                    |     |    |    |                | 0  | 18.5           | 33.1 |      |       |        |                |                |     |                |       |        |       |     |    |     |                                                  | 3.5     | 3.89                                  | 32.27 | 16.97          | 16.97                                                   | 0.042        |      |
| WGN 15C  |    |                    |     |    |    |                | 20 | 26.7           | 42.1 |      |       |        |                | 1              | 1   |                |       |        |       |     |    |     |                                                  | 4.61    | 5.59                                  | 45.08 | 21.56          | 21.56                                                   | 0.059        |      |
| WGN 15H  | 16 | 4                  | 8.5 | 32 | 25 | 3.5            | 25 | 43.4           | 58.8 | 4.5  | M3    | M3x4   | 3              | ,              |     | 15             | 10    | 6      | 4,5   | 3,5 | 40 | 15  | M3x10                                            | 6.37    | 9.11                                  | 73.50 | 57.82          | 57.82                                                   | 0.092        | 1,0  |
| WGN 15SD |    |                    | 5,5 | -  |    | 310            | 0  | 18.5           | 33.1 | .,,  |       |        |                |                | 3   |                |       |        | .,,   | 0,0 |    |     |                                                  | 3.5     | 3.89                                  | 32.27 | 16.97          | 16.97                                                   | 0.041        |      |
| WGN 15CD |    |                    |     |    |    |                | 20 | 27.5           | 42.1 |      |       |        |                | 14             | 3   |                |       |        |       |     |    |     |                                                  | 4.65    | 5.84                                  | 48.41 | 25,23          | 25.23                                                   | 0.058        |      |
| WGN 15HD |    |                    |     |    |    |                | 25 | 45.5           | 60.1 |      |       |        |                | 20             | 3   |                |       |        |       |     |    |     |                                                  | 6.64    | 9.73                                  | 80.68 | 41.74          | 41.74                                                   | 0.01         |      |


# (2)WGW-C/WGW-H


#### WGW7,WGW9,WGW12






#### WGW15





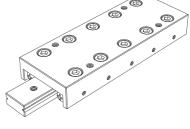


| Model   |      | mpon<br>size<br>(mm) |     |    |    |                | S  | lider          | size | (mm | 1)   |          |                |                | ı              | Rails          | size | (mm | )   |    |    |          | dynamic | Basic<br>static<br>rated load | sta                    | ermissi<br>tic mor     | nent                   |              | eight                 |
|---------|------|----------------------|-----|----|----|----------------|----|----------------|------|-----|------|----------|----------------|----------------|----------------|----------------|------|-----|-----|----|----|----------|---------|-------------------------------|------------------------|------------------------|------------------------|--------------|-----------------------|
|         | Н    | H <sub>1</sub>       | N   | W  | В  | B <sub>1</sub> | С  | L <sub>1</sub> | L    | G   | Gn   | MxI      | H <sub>2</sub> | W <sub>R</sub> | W <sub>B</sub> | H <sub>R</sub> | D    | h   | d   | Р  | Е  | (mm)     | C(kN)   | C <sub>0</sub> (kN)           | M <sub>R</sub><br>kN-m | M <sub>P</sub><br>kN-m | M <sub>Y</sub><br>kN-m | slider<br>kg | Guide<br>rail<br>kg/m |
| WGW 7C  | q    | 1.9                  | 5.5 | 25 | 19 | 3              | 10 | 21             | 31.2 | _   | ø1.2 | M3x3     | 1.85           | 14             | _              | 52             | 6    | 3.2 | 3.5 | 30 | 10 | M3x6     | 1.37    | 2.06                          | 15.70                  | 7.14                   | 7.14                   | 0.020        | 0.51                  |
| WGW 7H  | J    | 1.0                  | 0.0 | 20 | 10 | J              | 19 | 30.8           | 41   |     | 71.2 | IVIOAO   | 1.00           | 17             |                | 02             | U    | 0.2 | 0.0 | 00 | 10 | IVIOAU   | 1.77    | 3.14                          | 23.45                  | 15,53                  | 15,53                  | 0.029        | 0.01                  |
| WGW 9C  | 12   | 2.9                  | 6   | 30 | 21 | 4.5            | 12 | 27.5           | 39.3 | _   | ø1,2 | M3x3     | 2.4            | 18             | _              | 7              | 6    | 3,5 | 4,5 | 30 | 10 | M3x8     | 2.75    | 4.12                          | 40.12                  | 18.96                  | 18.96                  | 0.040        | 0,91                  |
| WGW 9H  | 12   | 2.0                  | U   | 30 | 23 | 3.5            | 24 | 38.5           | 50.7 |     | ¥1,Z | IVIOAO   | 2.7            | 10             |                | '              | U    | 0.0 | 7.0 | 00 | 10 | IVIOAU   | 3.43    | 5.89                          | 54.54                  | 34.00                  | 34.00                  | 0.057        | 0.01                  |
| WGW 12C | 14   | 3.4                  | 8   | 40 | 28 | 6              | 15 | 31.3           | 46.1 |     | d1 2 | M3x3.6   | 2.8            | 24             |                | 8.5            | 8    | 4.5 | 4.5 | 40 | 15 | M4x8     | 3.92    | 5.59                          | 70.34                  | 27.80                  | 27.80                  | 0.071        | 1.49                  |
| WGW 12H | 17   | J. <del>1</del>      | U   | 40 | 20 | U              | 28 | 45.6           | 60.4 | -   | ¥1.Z | IVIOAGIO | 2.0            | 24             | -              | 0.0            | U    | 4.0 | 4.0 | 40 | 10 | IVITAU   | 5.10    | 8.24                          |                        |                        |                        | 0.103        |                       |
| WGW 15C | 16   | 3,4                  | 9   | 60 | 45 | 7.5            | 20 | 38             | 54.8 | 5.2 | M3   | M4x4.2   | 3.2            | 42             | 23             | 9.5            | 8    | 4.5 | 4.5 | 40 | 15 | M4x10    | 6.77    | 9,22                          | 199.34                 | 56,66                  | 56,66                  | 0.143        | 2.86                  |
| WGW 15H | 10   | 3.4                  | J   | 00 | 40 | 7.0            | 35 | 57             | 73.8 | J.Z | IVIO | IVI+A4.Z | 0,2            | 42             | 23             | 9.0            | O    | 4.0 | 4.0 | 40 | 10 | IVI+X IU | 8.93    |                               |                        |                        |                        | 0.215        | 2.00                  |
| 注: 1 kg | f= 9 | .81N                 | 1   |    |    |                |    |                |      |     |      |          |                |                |                |                |      |     |     |    |    |          |         |                               |                        |                        |                        |              |                       |

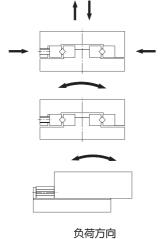
#### 1. Characteristics of the WVR series

The crossed roller unit is a high-precision limited linear motion unit that is installed with crossed roller guides between the workbench and the base. It features high precision, small size, and high rigidity. There are two models of the crossed roller unit: the WVRU type and the miniature WVRT type, which are widely used in the sliding seat part of office equipment and external devices, various measuring instruments, and precision machines such as printed circuit board drilling machines.

#### (1)Easy to install


Due to the installation of cross roller guides between the high-precision machined workbench and base, this product only requires bolt installation to achieve a high-precision linear guide mechanism.

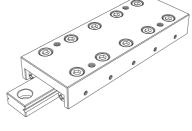
#### (2)Allowable load is large


Because the rollers with large rated loads are assembled together at very short pitches, they form a linear guide mechanism that can bear heavy loads and has high rigidity, resulting in a long service life.

#### (3)A variety of usage methods

Due to the vertical arrangement of the rollers, the system can evenly bear the loads applied to the worktable from four directions (see the diagram below).




WVRT type

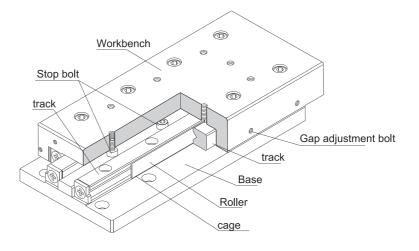


, ,,,,,,,

# The bases and worktables of the WVRT-M and WVRT-AM models are made of stainless steel. In addition, the tracks, rollers, roller

are made of stainless steel. In addition, the tracks, rollers, roller retainers, and screws are also made of stainless steel, providing sufficient corrosion resistance. Moreover, the bases and worktables of the WVRU-M model are made of aluminum.




WVRT-A type

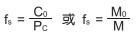


WVRU type

#### 2. WVR series structure

(4) High corrosion resistance




#### 3. Rated Load and Rated Life

#### Rated load in all directions

The rated loads of types WVRT, WVRT-A and WVRU are equal in all four directions (radial, opposite radial and lateral), and their values are recorded in the corresponding dimension tables and denoted as C and C0.

#### (2) Static safety factor fs

When the crossed roller unit is at rest or in operation, it may be subjected to unexpected external forces such as inertial forces caused by vibration, shock, or start-stop. For such load effects, it is necessary to consider its static safety factor.

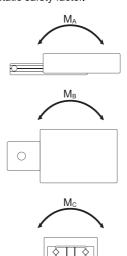


fs : Static safety factor

Co: Basic static rated load (kN)

Mo: Static allowable torque (MA, MB, MC)

Pc: Calculated load value (kN)


M: Calculated torque value (kN)

Reference value of static safety factor

The lower limit of the reference value of the static safety factor under each usage condition is shown in Table 1.

Table 1 Benchmark Values of Static Safety Factor (fs)

| Use machinery      | Load conditions                        | The lower limit of fs |
|--------------------|----------------------------------------|-----------------------|
| General industrial | When there is no<br>vibration or shock | 1~1.3                 |
| machinery          | When there is vibration or shock       | 2~3                   |



#### (3) Calculate the rated life.

At WODTOP, the rated life of the crossed roller unit is defined as 100km. The rated life (L10) can be calculated by the following formula based on the basic dynamic load rating (C) and the load (PC) acting on the crossed roller unit.

$$L_{10} = \left(\frac{C}{P_C}\right)^{\frac{10}{3}} \times 100$$
 .....(1)

L<sub>10</sub>: Static safety factor (km)

C<sub>0</sub>: Basic dynamic rated load (kN)

Pc: Calculated value of radial load (kN)

When comparing the rated life (L10), it is necessary to take into account which of the basic dynamic load ratings is defined as 50 km or 100 km, and convert the basic dynamic load rating as required according to ISO 14728-1. The basic dynamic load rating conversion formula specified in ISO is

$$C_{100} = \frac{C_{50}}{1.23}$$

 $C_{50}\,$  : The basic dynamic load rating with a rated life of 50,000 km.

C<sub>100</sub>: The basic dynamic load rating with a rated life of 100,000 km.

#### (4) Calculation of Rated Life Considering the Use Conditions

In practical application, due to the fact that vibration and shock are usually present during operation, the load acting on the crossed roller unit constantly changes, making it difficult to accurately grasp. Additionally, the ambient temperature during use can also have a significant impact on the lifespan. Considering these conditions, the rated life (L10m) taking into account the usage conditions can be calculated by the following formula (2).

Considering the coefficient  $\alpha$  of the usage conditions

 $\alpha = \frac{f_T}{f_{VA}}$ 

α: Coefficient considering the usage conditions

 $f_T$ : Temperature coefficient (Refer to the figure 1)

fw: Load factor (Reference Table2)

Rated life L10m considering the usage conditions

$$L_{10m} = \left(\alpha \times \frac{C}{P_C}\right)^{\frac{10}{3}} \times 100$$
 .....(2)

L<sub>10m</sub>: Rated life considering the conditions of use (km)

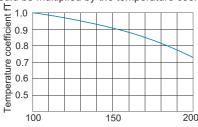
Co: Basic dynamic rated load (kN)

Pc : Calculated value of radial load (kN)

#### (4) Calculate the lifespan time.

After obtaining the rated life (L10), if the stroke length and the number of reciprocations per minute remain constant, the working life time can be calculated using the following formula.

$$L_h = \frac{L_{10} \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$


 $\mathsf{L}_\mathsf{h}\,$  : Rated life considering the conditions of use

ℓ<sub>s</sub> : Basic dynamic rated load (mm)

n<sub>1</sub>: Calculated value of radial load (min<sup>-1</sup>)

#### (5) fT: Temperature coefficient

If the ambient temperature of the WVRT, WVRT-A or WVRU type exceeds 100℃, the adverse effects of high temperature should be taken into account, and the basic rated load should be multiplied by the temperature coefficient indicated in Figure 1.



Rolling surface temperature (℃)

Figure 1 Temperature Coefficient (fT)

#### (6) fW: Load factor

Generally, mechanical devices that perform reciprocating motion are often accompanied by vibration or shock during operation. It is particularly difficult to accurately calculate the vibration generated at high speeds and all the shocks caused by frequent starts and stops. Therefore, when the actual load acting on the WVRT, WVRT-A or WVRU type cannot be obtained, or when the influence of speed and vibration is significant, please divide the basic dynamic load rating (C) by the load factor obtained empirically in Table 2.

Table 2 Load Coefficient (fW)

| Vibration, shock | Velocity (V)                     | fw      |
|------------------|----------------------------------|---------|
| tiny             | At very low speeds, V ≤ 0.25 m/s | 1~1.2   |
| Little           | At low speeds, 0.25 < V ≤ 1 m/ss | 1.2~1.5 |

# 3. Precision Specifications

The dimensional tolerances of the height (M) and width (W) of the crossed roller units WVRT, WVRT-A or WVRU type, as well as the walking accuracy with respect to the D surface, are all recorded in the size table of each model.

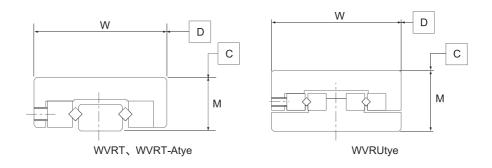
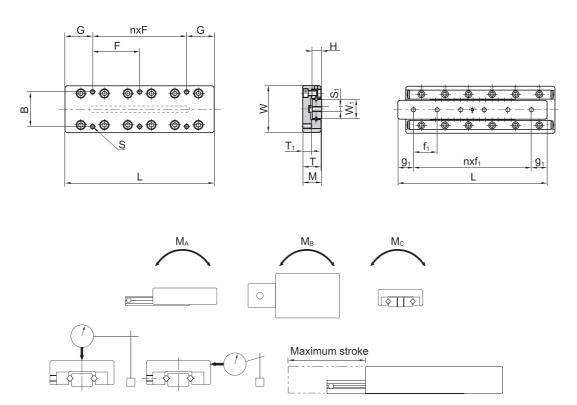




Figure 2 Precision Specifications

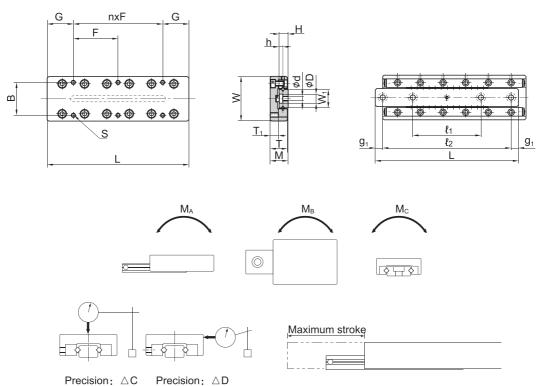
# 4. Miniature WVRT Type (Base Threaded Type)



Precision: △C F

Precision:  $\triangle D$ 

unit: mm


|           |         |            |             |        |         |             |                                   |                          |                      |      |                |     |                | Race           | e surface dime  | neione         | and                         |          |                | Ct/            | atic allowa |      | 11111; |        |
|-----------|---------|------------|-------------|--------|---------|-------------|-----------------------------------|--------------------------|----------------------|------|----------------|-----|----------------|----------------|-----------------|----------------|-----------------------------|----------|----------------|----------------|-------------|------|--------|--------|
|           | Ma      | in di      | men         | sion   | S       |             | kbench sı                         |                          |                      | Side | e dim          | ens | ions           | in             | stallation hole | positio        | ns<br>ns                    | Basic ra | ted load       | 310            | torque      | ible | Precis | ion µm |
| Nominal   | Maximum | width<br>W | height<br>M | length | quality | Th<br>holes | ne position of the for the workbe | ne threade<br>ench insta | ed<br><b>l</b> ation |      |                |     |                |                |                 |                | Ro <b>ll</b> er<br>quantity | С        | C <sub>0</sub> | M <sub>A</sub> | Мв          | Mc   |        |        |
| model     | stroke  | ±0.1       | ±0.1        | _      | 9       | В           | nxF                               | G                        | S                    | Т    | T <sub>1</sub> | Н   | W <sub>1</sub> | S <sub>1</sub> | nxf₁            | g <sub>1</sub> | Z                           | kN       | kN             | N•m            | N•m         | N•m  | △C     | △D     |
| WVRT 1025 | 12      |            |             | 25     | 23      |             | 1x18                              | 3.5                      |                      |      |                |     |                |                | 2x7.5           | 5              | 5                           | 0.46     | 0.61           | 1.52           | 1.25        | 2.29 |        | _      |
| WVRT 1035 | 18      |            |             | 35     | 32      |             | 1x28                              | 3.5                      |                      |      |                |     |                |                | 2x10            |                | 7                           | 0.63     | 0.92           | 2.62           | 2.32        | 3.44 |        | 4      |
| WVRT 1045 | 25      |            |             | 45     | 42      |             | 1x20                              | 12.5                     |                      |      |                |     |                |                | 3x10            |                | 10                          | 0.95     | 1.53           | 4.14           | 4.53        | 5.73 |        |        |
| WVRT 1055 | 32      | 20         | 8           | 55     | 52      | 14          | 1x30                              | 12.5                     | M2.6                 | 7.5  | 3.5            | 4   | 6.7            | M2.6           | 4x10            |                | 12                          | 1.09     | 1.83           | 5.92           | 6.41        | 6.87 |        |        |
| WVRT 1065 | 40      |            |             | 65     | 62      |             | 2x20                              | 12.5                     |                      |      |                |     |                |                | 5x10            | 7.5            | 14                          | 1.23     | 2.14           | 8.08           | 8.62        | 8.02 |        | 5      |
| WVRT 1075 | 45      |            |             | 75     | 72      |             | 1x30                              | 22.5                     |                      |      |                |     |                |                | 6x10            |                | 18                          | 1.50     | 2.75           | 13.3           | 14.0        | 10.3 |        |        |
| WVRT 1085 | 50      |            |             | 85     | 82      |             | 2x30                              | 12.5                     |                      |      |                |     |                |                | 7x10            |                | 20                          | 1.63     | 3.05           | 16.4           | 17.2        | 11.5 |        |        |
| WVRT 2035 | 18      |            |             | 35     | 78      |             | 1x28                              | 3.5                      |                      |      |                |     |                |                | 1x20            |                | 5                           | 0.84     | 1.09           | 4.32           | 3.55        | 7.06 | 2      | 4      |
| WVRT 2050 | 30      |            |             | 50     | 113     |             | 1x43                              | 3.5                      |                      |      |                |     |                |                | 2x15            |                | 7                           | 1.16     | 1.63           | 7.45           | 6.59        | 10.6 |        |        |
| WVRT 2065 | 40      |            |             | 65     | 147     |             | 1x30                              | 17.5                     |                      |      |                |     |                |                | 3x15            |                | 9                           | 1.46     | 2.17           | 11.8           | 10.5        | 14.1 |        |        |
| WVRT 2080 | 50      | 30         | 12          | 80     | 184     | 22          | 1x45                              | 17.5                     | М3                   | 11.5 | 5.5            | 6   | 12.2           | М3             | 4x15            |                | 12                          | 2.01     | 3.26           | 16.8           | 18.2        | 21.2 |        |        |
| WVRT 2095 | 60      |            |             | 95     | 220     |             | 2x30                              | 17.5                     | 1                    |      |                |     |                |                | 5x15            | 10             | 14                          | 2.26     | 3.80           | 23.0           | 24.5        | 24.7 |        |        |
| WVRT 2110 | 70      |            |             | 110    | 257     |             | 1x45                              | 32.5                     |                      |      |                |     |                |                | 6x15            |                | 17                          | 2.51     | 4.34           | 37.9           | 35.7        | 28.2 |        | 5      |
| WVRT 2125 | 80      |            |             | 125    | 290     |             | 2x45                              | 17.5                     |                      |      |                |     |                |                | 7x15            |                | 19                          | 2.76     | 4.89           | 46.7           | 44.3        | 31.8 |        |        |
| WVRT 3055 | 30      |            |             | 55     | 229     |             | 1x40                              | 7.5                      | 1                    |      |                |     |                |                | 1x35            |                | 6                           | 2.71     | 3.67           | 12.2           | 13.9        | 31.9 |        |        |
| WVRT 3080 | 45      |            |             | 80     | 336     |             | 1x65                              | 7.5                      | 1                    |      |                |     |                |                | 2x25            | 1              | 10                          | 4.06     | 6.11           | 33.1           | 36.2        | 53.1 |        |        |
| WVRT 3105 | 60      |            |             | 105    | 442     |             | 1x50                              | 27.5                     | 1                    |      |                |     |                |                | 3x25            | 1              | 13                          | 4.68     | 7.33           | 64.6           | 59.8        | 63.8 |        |        |
| WVRT 3130 | 75      | 40         | 16          | 130    | 551     | 30          | 1x75                              | 27.5                     | M4                   | 15.5 | 7.5            | 8   | 16             | M4             | 4x25            | 15             | 17                          | 5.87     | 9.77           | 107            | 100         | 85   |        |        |
| WVRT 3155 | 90      |            |             | 155    | 657     |             | 2x50                              | 27.5                     |                      |      |                |     |                |                | 5x25            | , ,            | 20                          | 6.98     | 12.2           | 131            | 138         | 106  | 3      | 6      |
| WVRT 3180 | 105     |            |             | 180    | 766     |             | 1x75                              | 52.5                     |                      |      |                |     |                |                | 6x25            |                | 24                          | 8.05     | 14.7           | 189            | 196         | 128  |        |        |
| WVRT 3205 | 130     |            |             | 205    | 871     |             | 2x75                              | 27.5                     |                      |      |                |     |                |                | 7x25            |                | 26                          | 8.57     | 15.9           | 222            | 230         | 138  |        |        |

A fully stainless steel type with high corrosion resistance can also be provided.  $\!\!\!\!\!_{\circ}$ 

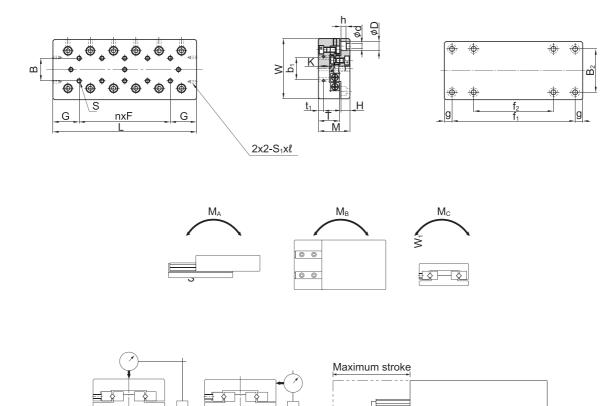
For example: WVRT 2035 M

— The marking of stainless steel type

# 5. Miniature WVRT-A Type (Base Mounting Hole Type)



unit: mm


|            | Ma      | in d | imen   | sion   | S   | Wo     | rkbench :      | surface siz                     | ze               | S    | ide din        | nensio | ns             | Base su<br>install | rface c    | limensi    | ions ar        | nd                          | Basic ra | ited load      | Sta            | atic allowa    |      | Precis | ion µm |
|------------|---------|------|--------|--------|-----|--------|----------------|---------------------------------|------------------|------|----------------|--------|----------------|--------------------|------------|------------|----------------|-----------------------------|----------|----------------|----------------|----------------|------|--------|--------|
| Nominal    | Maximum |      | height | length | ' ' | The po | osition of the | e threade<br>nch insta <b>l</b> | d holes<br>ation |      |                |        |                | Install            | ation r    | ole po     | SITIONS        | Ro <b>ll</b> er<br>quantity | С        | C <sub>0</sub> | M <sub>A</sub> | M <sub>B</sub> | Mc   |        |        |
| model      | stroke  | ±0.1 | ±0.1   | L      | g   | В      | nxF            | G                               | s                | Т    | T <sub>1</sub> | Н      | W <sub>1</sub> | dxDxh              | <b>l</b> 1 | <b>l</b> 2 | g <sub>1</sub> | Z                           | kN       | kN             | N•m            | N•m            | N•m  | △c     | ΔD     |
| WVRT 1025A | 12      |      |        | 25     | 23  |        | 1x18           | 3.5                             |                  |      |                |        |                |                    | -          | 18         | 3.5            | 5                           | 0.46     | 0.61           | 1.52           | 1.25           | 2.29 |        | _      |
| WVRT 1035A | 18      |      |        | 35     | 32  |        | 1x28           | 3.5                             |                  |      |                |        |                |                    | -          | 25         | 5              | 7                           | 0.63     | 0.92           | 2,62           | 2.32           | 3.44 |        | 4      |
| WVRT 1045A | 25      |      |        | 45     | 42  |        | 1x20           | 12.5                            |                  |      |                |        |                |                    | 25         | 38         | 3.5            | 10                          | 0.95     | 1.53           | 4.14           | 4.53           | 5.73 |        |        |
| WVRT 1055A | 32      | 20   | 8      | 55     | 52  | 14     | 1x30           | 12.5                            | M2.5             | 7.5  | 3.5            | 4      | 6.7            | 2.5x4.1x2.2        | 29         | 48         | 3.5            | 12                          | 1.09     | 1.83           | 5.92           | 6.41           | 6.87 |        |        |
| WVRT 1065A | 40      |      |        | 65     | 62  |        | 2x20           | 12.5                            |                  |      |                |        |                |                    | 31         | 55         | 5              | 14                          | 1.23     | 2.14           | 8.08           | 8.62           | 8.02 |        | 5      |
| WVRT 1075A | 45      |      |        | 75     | 72  |        | 1x30           | 22.5                            |                  |      |                |        |                |                    | 35         | 65         | 5              | 18                          | 1.50     | 2.75           | 13.3           | 14.0           | 10.3 |        |        |
| WVRT 1085A | 50      |      |        | 85     | 82  |        | 2x30           | 12.5                            |                  |      |                |        |                |                    | 40         | 75         | 5              | 20                          | 1.63     | 3.05           | 16.4           | 17.2           | 11.5 |        |        |
| WVRT 2035A | 18      |      |        | 35     | 78  |        | 1x28           | 3.5                             |                  |      |                |        |                |                    | -          | 25         | 5              | 5                           | 0.84     | 1.09           | 4.32           | 3.55           | 7.06 | 2      | 4      |
| WVRT 2050A | 30      |      |        | 50     | 113 |        | 1x43           | 3.5                             |                  |      |                |        |                |                    | -          | 35         | 7.55           | 7                           | 1.16     | 1.63           | 7.45           | 6.59           | 10.6 |        |        |
| WVRT 2065A | 40      |      |        | 65     | 147 |        | 1x30           | 17.5                            |                  |      |                |        |                |                    | 33         | 55         | 5              | 9                           | 1.46     | 2.17           | 11.8           | 10.5           | 14.1 |        |        |
| WVRT 2080A | 50      | 30   | 12     | 80     | 181 | 22     | 1x45           | 17.5                            | М3               | 11.5 | 5.5            | 6      | 12.2           | 3.5x6x3.2          | 40         | 70         | 5              | 12                          | 2.01     | 3.26           | 16.8           | 18.2           | 21.2 |        |        |
| WVRT 2095A | 60      |      |        | 95     | 217 |        | 2x30           | 17.5                            |                  |      |                |        |                |                    | 45         | 85         | 5              | 14                          | 2.26     | 3.80           | 23.0           | 24.5           | 24.7 |        |        |
| WVRT 2110A | 70      |      |        | 110    | 254 |        | 1x45           | 32.5                            |                  |      |                |        |                |                    | 50         | 95         | 7.5            | 17                          | 2.51     | 4.34           | 37.9           | 35.7           | 28.2 |        | 5      |
| WVRT 2125A | 80      |      |        | 125    | 287 |        | 2x45           | 17.5                            |                  |      |                |        |                |                    | 55         | 110        | 7.5            | 19                          | 2.76     | 4.89           | 46.7           | 44.3           | 31.8 |        |        |
| WVRT 3055A | 30      |      |        | 55     | 226 |        | 1x40           | 7.5                             |                  |      |                |        |                |                    | -          | 40         | 7.5            | 6                           | 2.71     | 3.67           | 12.2           | 13.9           | 31.9 |        |        |
| WVRT 3080A | 45      |      |        | 80     | 333 |        | 1x65           | 7.5                             |                  |      |                |        |                |                    | 43         | 68         | 6              | 10                          | 4.06     | 6.11           | 33.1           | 36.2           | 53.1 |        |        |
| WVRT 3105A | 60      |      |        | 105    | 439 |        | 1x50           | 27.5                            |                  |      |                |        |                |                    | 55         | 90         |                | 13                          | 4.68     | 7.33           | 64.6           | 59.8           | 63.8 |        |        |
| WVRT 3130A | 75      | 40   | 16     | 130    | 548 | 30     | 1x75           | 27.5                            | M4               | 15.5 | 7.5            | 8      | 16             | 4.5x7.5x4.2        | 65         | 115        |                | 17                          | 5.87     | 9.77           | 107            | 100            | 85   |        |        |
| WVRT 3155A | 90      |      |        | 155    | 652 |        | 2x50           | 27.5                            |                  |      |                |        |                |                    | 95         | 140        | 15             | 20                          | 6.98     | 12.2           | 131            | 138            | 106  | 3      | 6      |
| WVRT 3180A | 105     |      |        | 180    | 761 |        | 1x75           | 52.5                            |                  |      |                |        |                |                    | 85         | 165        |                | 24                          | 8.05     | 14.7           | 189            | 196            | 128  |        |        |
| WVRT 3205A | 130     |      |        | 205    | 866 |        | 2x75           | 27.5                            |                  |      |                |        |                |                    | 90         | 190        |                | 26                          | 8.57     | 15.9           | 222            | 230            | 138  |        |        |

A fully stainless steel type with high corrosion resistance can also be provided.

For example: WVRT 2035A M

Labeling of stainless steel grades

# 6. WVRU Type

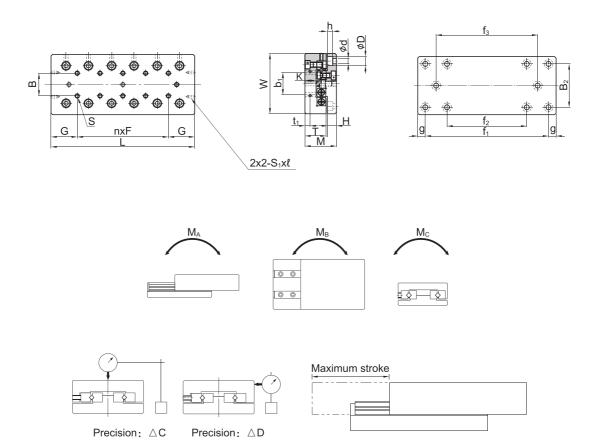


unit: mm

|           |         |       |        |        |                |                   |                               |                    |                  |     |                |             |         |           |        |              |                |                               |                |                      |               |             |             |      |                   |      | -  | mm           |
|-----------|---------|-------|--------|--------|----------------|-------------------|-------------------------------|--------------------|------------------|-----|----------------|-------------|---------|-----------|--------|--------------|----------------|-------------------------------|----------------|----------------------|---------------|-------------|-------------|------|-------------------|------|----|--------------|
|           | N       | Иair  | ı dim  | nens   | ions           |                   |                               |                    |                  | ben | ch s           | urface      | size    | Э         |        |              | Band<br>and    | ase surl<br>insta <b>ll</b> a | ace dir        | nensior<br>le positi | ns<br>ions    | Basic<br>lo | rated<br>ad |      | c allow<br>torque | able |    | cision<br>um |
| Nominal   | Maximum | width | heiaht | lenath | Quality (Note) | The por<br>for th | sition of the t<br>e workbenc | hreaded<br>h insta | d holes<br>ation | Р   | osition o      | of threaded | holes f | or side a | assemb | oly          |                |                               |                |                      | Roller        | C           | Co          | MA   | Мв                | Mc   |    |              |
| model     | stroke  | -0.2  |        | Ľ      | g              | В                 | nxF                           | G                  | S                | b₁  | t <sub>1</sub> | S₁xℓ        | Т       | Н         | K      | dxDxh        | B <sub>2</sub> | f <sub>1</sub>                | f <sub>2</sub> | g                    | quantity<br>Z | kN          | kN          | N•m  | N•m               | N•m  | △C | △D           |
| WVRU 1025 | 12      |       |        | 25     | 0.08(0.04)     |                   | -                             |                    |                  |     |                |             |         |           |        |              |                | 18                            | -              |                      | 5             | 0.46        | 0.61        | 1.52 | 1.25              | 4.12 |    |              |
| WVRU 1035 | 18      |       |        | 35     | 0.11(0.05)     |                   | 1x10                          |                    |                  |     |                |             |         |           |        |              |                | 28                            | -              |                      | 7             | 0.63        | 0.92        | 2.62 | 2.32              | 6.18 |    | 4            |
| WVRU 1045 | 25      |       |        | 45     | 0.15(0.07)     |                   | 2x10                          |                    |                  |     |                |             |         |           |        |              |                | 38                            |                |                      | 10            | 0.95        | 1.53        | 4.14 | 4.53              | 10.3 |    |              |
| WVRU 1055 | 32      | 30    | 17     | 55     | 0.18(0.09)     | 10                | 3x10                          | 12.5               | M2               | 12  | 2.5            |             | 11      | 5.5       | 6.5    | 2.55x4.1x2.5 | 22             | 48                            | 28             | 3.5                  | 12            | 1.09        | 1.83        | 5.92 | 6.41              | 12.4 |    |              |
| WVRU 1065 | 40      |       |        | 65     | 0.21(0.1)      |                   | 4x10                          |                    |                  |     |                |             |         |           |        |              |                | 58                            | 38             |                      | 14            | 1.23        | 2.14        | 8.08 | 8.62              | 14.4 |    | 5            |
| WVRU 1075 | 45      |       |        | 75     | 0.24(0.12)     |                   | 5x10                          |                    |                  |     |                |             |         |           |        |              |                | 68                            | 48             |                      | 18            | 1.50        | 2.75        | 13.3 | 14.0              | 18.6 | 2  | 5            |
| WVRU 1085 | 50      |       |        | 85     | 0.27(0.13)     |                   | 6x10                          |                    |                  |     |                | M2x4        |         |           |        |              |                | 78                            | 58             |                      | 20            | 1.63        | 3.05        | 16.4 | 17.2              | 20.6 |    |              |
| WVRU 2035 | 18      |       |        | 35     | 0.2(0.09)      |                   | -                             |                    |                  |     |                | IVIZX4      |         |           |        |              |                | 25                            | -              |                      | 5             | 0.84        | 1.09        | 4.32 | 3.55              | 9.77 |    | 4            |
| WVRU 2050 | 30      |       |        | 50     | 0.26(0.13)     |                   | 1x15                          |                    |                  |     |                |             |         |           |        |              |                | 40                            | •              |                      | 7             | 1.16        | 1.63        | 7.45 | 6.59              | 14.7 |    | 4            |
| WVRU 2065 | 40      |       |        | 65     | 0.34(0.17)     |                   | 2x15                          |                    |                  |     |                |             |         |           |        |              |                | 55                            | •              |                      | 9             | 1.46        | 2.17        | 11.8 | 10.6              | 19.5 |    |              |
| WVRU 2080 | 50      | 40    | 21     | 80     | 0.42(0.21)     | 15                | 3x15                          | 17.5               | М3               | 16  | 3.4            |             | 14      | 6.5       | 7.5    | 3.5x6x3.5    | 30             | 70                            | 40             | 5                    | 12            | 2.01        | 3.26        | 16.9 | 18.2              | 29.3 |    | 5            |
| WVRU 2095 | 60      |       |        | 95     | 0.5(0.25)      |                   | 4x15                          |                    |                  |     |                |             |         |           |        |              |                | 85                            | 55             |                      | 14            | 2.06        | 3.80        | 23   | 24.5              | 34.2 |    |              |
| WVRU 2110 | 70      |       |        | 110    | 0.58(0.29)     |                   | 5x15                          |                    |                  |     |                |             |         |           |        |              |                | 100                           | 70             |                      | 17            | 2.51        | 4.34        | 37.9 | 35.7              | 39.1 | م  | 6            |
| WVRU 2125 | 80      |       |        | 125    | 0.66(0.33)     |                   | 6x15                          |                    |                  |     |                |             |         |           |        |              |                | 115                           | 85             |                      | 19            | 2.76        | 4.89        | 46.7 | 44.3              | 44.0 |    | "            |

A fully stainless steel type with high corrosion resistance is also available.

The values in parentheses indicate the mass of the stainless steel type.


Precision: △C

Precision: △D

For example: WVRU 2035 M

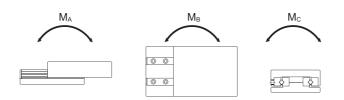
Stainless steel type marking (workbench and base: aluminum))

# 7、WVRU type



unit: mm

|           | ı       | Mair  | n din     | nens           | ions        |                  |                             |                               |                   | rkbe           | ench           | surfac      | ce si   | ze        |        |           |                | Base<br>and inst | surface<br>ta <b>l</b> ation | dimen:         | sions<br>ositions |                                  | Basic<br>lo | rated<br>ad |      | c a <b>ll</b> owa<br>torque | ab <b>l</b> e | Prec<br>µ | ision<br>m |
|-----------|---------|-------|-----------|----------------|-------------|------------------|-----------------------------|-------------------------------|-------------------|----------------|----------------|-------------|---------|-----------|--------|-----------|----------------|------------------|------------------------------|----------------|-------------------|----------------------------------|-------------|-------------|------|-----------------------------|---------------|-----------|------------|
| Nominal   | Maximum | width | height    | <b>l</b> enath | Quality     | The po<br>for th | sition of the<br>ne workben | threade<br>ch insta <b>ll</b> | d holles<br>ation | Р              | osition        | of threaded | holes f | or side : | asseml | oly       |                |                  |                              |                |                   | Roller                           | С           | Co          | MA   | Мв                          | Мс            |           |            |
| model     | stroke  | W     | M<br>±0.1 | Ľ              | (Note)<br>g | В                | nxF                         | G                             | S                 | b <sub>1</sub> | t <sub>1</sub> | S₁xℓ        | Т       | Ι         | K      | dxDxh     | B <sub>2</sub> | f <sub>1</sub>   | f <sub>2</sub>               | f <sub>3</sub> | g                 | Ro <b>ll</b> er<br>quantity<br>Z | kN          | kN          | N•m  | N•m                         | N•m           | △C        | △D         |
| WVRU 3055 | 30      |       |           | 55             | 0.57(0.3)   |                  | •                           |                               |                   |                |                |             |         |           |        |           |                | 35               | -                            | -              |                   | 6                                | 2.71        | 3.67        | 122  | 13.9                        | 51.3          | 2         | 5          |
| WVRU 3080 | 45      |       |           | 80             | 0.8(0.4)    |                  | 1x25                        |                               |                   |                |                |             |         |           |        |           |                | 60               | -                            |                |                   | 10                               | 4.06        | 6.11        | 33.1 | 36.2                        | 85.5          |           | J          |
| WVRU 3105 | 60      |       |           | 105            | 1.03(0.05)  |                  | 2x25                        |                               |                   |                |                |             |         |           |        |           |                | 85               | -                            |                |                   | 13                               | 4.68        | 7.33        | 64.6 | 59.8                        | 103           |           |            |
| WVRU 3130 | 75      | 60    | 28        | 130            | 1.26(0.7)   | 25               | 3x25                        | 27.5                          | M4                | 40             | 5.5            |             | 18.5    | 9         | 10     | 4.5x7.5x5 | 40             | 110              | -                            |                | 10                | 17                               | 5.87        | 9.77        | 107  | 100                         | 137           |           | 6          |
| WVRU 3155 | 90      |       |           | 155            | 1.49(0.9)   |                  | 4x25                        |                               |                   |                |                |             |         |           |        |           |                | 135              |                              | 85             |                   | 20                               | 6.98        | 12.2        | 131  | 138                         | 171           | 3         |            |
| WVRU 3180 | 105     |       |           | 180            | 1.72(1)     |                  | 5x25                        |                               |                   |                |                |             |         |           |        |           |                | 160              | -                            | 110            |                   | 24                               | 8.05        | 14.7        | 189  | 196                         | 205           |           | 7          |
| WVRU 3205 | 130     |       |           | 205            | 1.95(1.1)   |                  | 6x25                        |                               |                   |                |                | M3x6        |         |           |        |           |                | 185              | 85                           | 135            |                   | 26                               | 8.57        | 15.9        | 222  | 230                         | 222           |           | Ľ          |
| WVRU 4085 | 50      |       |           | 85             | 1.5(0.8)    |                  | -                           |                               |                   |                |                | IVIOXO      |         |           |        |           |                | 65               |                              |                | 10                | 7                                | 5.90        | 8.11        | 64.9 | 57.4                        | 162           | 2         | 5          |
| WVRU 4125 | 75      |       |           | 125            | 2.3(1.2)    |                  | 1x40                        |                               |                   |                |                |             |         |           |        |           |                | 80               | -                            |                |                   | 11                               | 8.82        | 13.5        | 147  | 134                         | 270           |           | 6          |
| WVRU 4165 | 105     |       |           | 165            | 3.1(1.5)    |                  | 2x40                        |                               |                   |                |                |             |         |           |        |           |                | 120              |                              |                |                   | 14                               | 11.5        | 18.9        | 200  | 214                         | 378           |           |            |
| WVRU 4205 | 135     | 80    | 35        | 205            | 3.8(1.9)    | 40               | 3x40                        | 42.5                          | M5                | 55             | 6.5            |             | 24      | 10.5      | 12.5   | 5.5x9.5x6 | 60             | 160              | 80                           | -              | 22.5              | 18                               | 14.0        | 24.3        | 330  | 347                         | 486           | 3         | 7          |
| WVRU 4245 | 155     |       |           | 245            | 4.6(2.2)    |                  | 4x40                        |                               |                   |                |                |             |         |           |        |           |                | 200              | 120                          | -              |                   | 22                               | 16.3        | 29.7        | 492  | 513                         | 594           |           |            |
| WVRU 4285 | 185     |       |           | 285            | 5.3(2.6)    |                  | 5x40                        |                               |                   |                |                |             |         |           |        |           |                | 240              | 160                          | -              |                   | 26                               | 18.6        | 35.1        | 687  | 711                         | 703           |           |            |


Note: A fully stainless steel type with high corrosion resistance is also available. The values in parentheses indicate the mass of the stainless steel type.

For example: WVRT 3080 M

Stainless steel type marking (workbench and base: aluminum)

# 8. WVRU Type







unit: mm

|             |         | M         | ain c     | dime   | nsions    |        |                                |                    |                   |                | orkl           | ben            | ch             | surfa     | ce s     | ize     |       |        |                | Bas<br>and ir  | e surfac<br>esta <b>l</b> latio | e dime<br>on ho <b>l</b> e | nsions<br>positio | าร            | Basic | rated<br>ad | Stat           | ic allow torque |        | recision<br>µm |
|-------------|---------|-----------|-----------|--------|-----------|--------|--------------------------------|--------------------|-------------------|----------------|----------------|----------------|----------------|-----------|----------|---------|-------|--------|----------------|----------------|---------------------------------|----------------------------|-------------------|---------------|-------|-------------|----------------|-----------------|--------|----------------|
| Nominal     | Maximum | width     | height    | length |           | The po | sition of the t<br>he workbend | threade<br>h insta | d holes<br>lation |                | Po             | osition        | of thr         | eaded hol | es for s | ide ass | embly | ,      |                |                |                                 |                            |                   | Roller        | С     | Co          | M <sub>A</sub> | M <sub>B</sub>  | Mc     |                |
| model       | stroke  | W<br>±0.1 | M<br>±0.1 | L      | (Note)    | В      | nxF                            | G                  | S                 | b <sub>1</sub> | b <sub>2</sub> | t <sub>1</sub> | t <sub>2</sub> | S₁xℓ      | Т        | Н       | K     | dxDxh  | B <sub>2</sub> | f <sub>1</sub> | f <sub>2</sub>                  | f <sub>3</sub>             | g                 | quantity<br>Z | kN    | kN          | N•m            | N•m             | N•m ∆  | ∆C △D          |
| WVRU 6110   | 60      |           |           | 110    | 3.2(1.7)  |        | -                              |                    |                   |                |                |                |                |           |          |         |       |        |                | 90             | -                               | -                          |                   | 6             | 16.4  | 22.7        | 150            | 172             | 510    | 3 6            |
| WVRU 6160   | 95      |           |           | 160    | 4.6(2.5)  |        | 1x50                           |                    |                   |                |                |                |                |           |          |         |       |        |                | 140            | -                               | -                          |                   | 9             | 20.5  | 30.2        | 410            | 367             | 680    | 3 6            |
| WVRU 6210   | 130     |           |           | 210    | 6(3.2)    |        | 2x50                           |                    |                   |                |                |                |                |           |          |         |       |        |                | 190            | -                               | -                          |                   | 13            | 28.2  | 45.3        | 800            | 740             | 1020   | 3 7            |
| WVRU 6260   | 165     | 100       | 45        | 260    | 7.4(4)    | 50     | 3x50                           | 55                 | M6                | 60             | 92             | 8              | 15             |           | 31       | 13      | 15    | 7x11x7 | 60             | 240            | -                               | -                          | 10                | 16            | 35.3  | 60.5        | 1040           | 1100            | 1360   | 3 7            |
| WVRU 6310   | 200     |           |           | 310    | 8.7(4.8)  |        | 4x50                           |                    |                   |                |                |                |                |           |          |         |       |        |                | 290            | -                               | -                          |                   | 19            | 38.8  | 68.0        | 1630           | 1540            | 1530   | 4 8            |
| WVRU 6360   | 235     |           |           | 360    | 10.1(5.6) |        | 5x50                           |                    |                   |                |                |                |                |           |          |         |       |        |                | 340            | 140                             | -                          |                   | 22            | 45.3  | 83.1        | 1970           | 2050            | 1870   | 4 8            |
| WVRU 6410   | 265     |           |           | 410    | 11.5(6.4) |        | 6x50                           |                    |                   |                |                |                |                | M4x8      |          |         |       |        |                | 390            | 190                             | -                          |                   | 26            | 51.6  | 98.3        | 2750           | 2840            | 2210   | 4 8            |
| WVRU 9210   | 130     |           |           | 210    | 12(7.1)   |        | -                              |                    |                   |                |                |                |                | IVI4XO    |          |         |       |        |                | 100            | -                               | -                          |                   | 9             | 52.3  | 75.8        | 1440           | 1290            | 2730 : | 3 7            |
| WVRU 9310   | 180     |           |           | 310    | 17.6(7.9) |        | 1x100                          |                    |                   |                |                |                |                |           |          |         |       |        |                | 200            | -                               | -                          |                   | 14            | 81.1  | 133         | 2810           | 2990            | 4780 : | 3 7            |
| WVRU 9410   | 350     |           |           | 410    | 23.2(-)   |        | 2x100                          |                    |                   |                |                |                |                |           |          |         |       |        |                | 300            | -                               | -                          |                   | 15            | 81.1  | 133         | 3660           | 3420            | 4780 4 | 4 8            |
| WVRU 9510   | 450     | 145       | 60        | 510    | 28.8(-)   | 85     | 3x100                          | 105                | M8                | 90             | 135            | 11             | 20             |           | 43       | 16      | 21    | 9x14x9 | 90             | 400            | -                               | -                          | 55                | 19            | 98.7  | 171         | 5710           | 5410            | 6140   | 4 8            |
| WVRU 9610   | 550     |           |           | 610    | 34.4(-)   |        | 4x100                          |                    |                   |                |                |                |                |           |          |         |       |        |                | 500            | 100                             | -                          |                   | 22            | 115   | 208         | 6910           | 7200            | 7500 4 | 4 9            |
| WVRU 9710   | 650     |           |           | 710    | 40(-)     |        | 5x100                          |                    |                   |                |                |                |                |           |          |         |       |        |                | 600            | 200                             | -                          |                   | 26            | 131   | 246         | 9460           | 9980            | 8870   | 4 9            |
| WVRU 9810   | 750     |           |           | 810    | 45.6(-)   |        | 6x100                          |                    |                   |                |                |                |                |           |          |         |       |        |                | 700            | 300                             | 100                        |                   | 29            | 139   | 265         | 12800          | 12400           | 9550   | 5 10           |
| *WVRU 9910  | 850     |           |           | 910    | 51.2(-)   |        | 7x100                          |                    |                   |                |                |                |                |           |          |         |       |        |                | 800            | 400                             | 200                        |                   | 33            | 155   | 303         | 16500          | 15900           | 10900  | 5 10           |
| *WVRU 91010 | 950     |           |           | 1010   | 56.8(-)   |        | 8x100                          |                    |                   |                |                |                |                |           |          |         |       |        |                | 900            | 500                             | 300                        |                   | 37            | 169   | 341         | 20500          | 20000           | 12300  | 5 10           |

A fully stainless steel type with high corrosion resistance is also available.

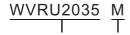
The values in parentheses indicate the mass of the stainless steel type.

The WVRU9910 and WVRU91010 models are made to order.

For example: WVRT 3080  $\ \underline{M}$ 

Stainless steel type marking (workbench and base: aluminum)

### Example of Nominal Model Composition


The composition of the nominal model varies depending on the characteristics of each model. Therefore, please refer to the composition example of the corresponding nominal model.

(1) Micro cross roller units

WVRT and WVRT-A types

 $\frac{WVRT2035}{I} \quad \frac{M}{I}$ Nominal model The marking of stainless steel type

(2) Cross roller unit WVRU type



Nominal model The marking of stainless steel type (Workbench and base: aluminum)

#### 10. Precautions for Use

#### Use

- (1) Please do not disassemble the parts. It may cause functional damage.
- (2) The cross roller unit has been adjusted to the appropriate preload state through the clearance adjustment bolt at the factory. If adjusted again, it may cause clearance or excessive preload, resulting in significant performance degradation. Please be careful.
- (3) Please do not drop or strike the cross roller unit. Otherwise, it may cause scratches or damage. Additionally, even if no damage is visible on the surface after an impact, it may still cause functional damage.
- (4) When handling the product, please use protective gloves, safety shoes and other protective equipment as needed to ensure safety.

#### Precautions for Use

- (1) Please be cautious to prevent the entry of foreign substances such as chips and coolant. Otherwise, it may lead to damage.
- (2) When foreign substances such as chips are attached, please reseal the lubricant after cleaning.
- (3) Please avoid using it under conditions exceeding 100°C.
- (4) Do not use the internal braking function that prevents the worktable from detaching as a mechanical brake. Impact may cause damage to the brake.
- (5) For small strokes, it is difficult to form an oil film on the contact surface between the rolling surface and the rolling elements, which may cause fretting wear. Please use a lubricant with excellent resistance to fretting wear. Additionally, it is recommended to periodically move the full stroke length to form an oil film between the rolling surface and the rolling elements.
- (6) Do not forcibly hammer the positioning parts (pins, keys, etc.) into the product. This may cause indentations on the rolling surface, leading to functional damage.
- (7) When the rigidity and precision of the installed components are insufficient, the bearing load may concentrate locally, significantly reducing the bearing performance. At the same time, please thoroughly discuss the rigidity and precision of the support seat and base, as well as the strength of the fixing bolts,

#### Lubrication

- (1) The lubrication of the crossed roller unit is the same as that of ordinary bearings. Use an appropriate amount of soap-based grease or lubricating oil.
- (2) Please carefully wipe off the anti-rust oil and then seal in the lubricant before use.
- (3) When lubricating the product, directly apply the lubricant to the rolling surface. Perform several running-in operations with the stroke length as the unit to allow the grease to enter the product interior.
- (4) Please avoid mixing different lubricants. Even if the thickeners are the same, greases with different additives may have adverse effects on each other.
- (5) When using in special environments such as places with frequent vibration, clean rooms, vacuum, low or high temperatures, please use grease that matches the specifications and environment.
- (6) The consistency of grease changes with temperature. The sliding resistance of the crossed roller unit changes with the consistency of the grease. Please note.
- (7) After greasing, the stirring resistance of the grease may increase the sliding resistance of the crossed roller unit. Please be sure to perform running-in operations to fully run-in the grease before operating the machinery.
- (8) After greasing is completed, excess grease may splash around. Please wipe it off as needed.
- (9) The properties of grease deteriorate and its lubricating performance decreases over time. Therefore, it is necessary to inspect and replenish the grease according to the usage frequency.
- (10) The lubrication intervals vary depending on the usage conditions and environments. Please determine the final greasing intervals and amounts based on the actual equipment.

# Linear guide ra

#### WV series

# Crossed roller guide rails / ball guide rails

#### Deviation of the cage

Although the cage that holds the rollers can operate with extreme precision, it may sometimes deviate due to the influence of mechanical drive vibration, inertial force, and shock, etc.

Please consult WODTOP if used under the following conditions:

- (1) When used vertically
- (2) When driven by a pneumatic cylinder
- (3) When driven by a cam
- (4) When driven by a high-speed crank
- (5) Under heavy torque load
- (6) When using an external baffle for the worktable to align with the guide rail

#### storage

When storing the crossed roller units, please keep them in the original packaging provided by WODTOP in a horizontal position indoors, and avoid environments with high temperatures, low temperatures and high humidity.

#### Abandonment

Please dispose of the product as industrial waste in an appropriate manner.

# Crossed roller guide rails / ball guide rails

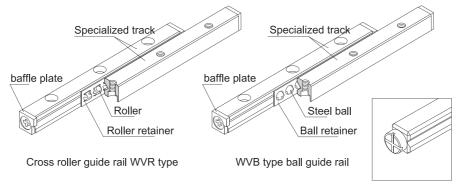
#### WV series

#### 1. Characteristics

In the WVR type, the precision rollers are combined with the roller retainer that is arranged orthogonally and the 90° V-shaped groove rolling surface set on the dedicated track. By assembling two rows of roller guides in parallel, the guide system can withstand loads in four directions. Moreover, since pre-load can be applied to the crossed roller guide, a gap-free, highly rigid and smooth sliding mechanism can be achieved. The WVB type is a limited linear motion system with low friction and high precision, which uses a ball retainer B type that holds precision steel balls at short pitch intervals and is combined with a dedicated track V type. Crossed roller guides and ball guides are widely used in the sliding parts of precision machines such as office equipment and their peripheral devices, various measuring instruments, printed circuit board drilling machines, optical measurement devices, optical tables, control mechanisms, X-ray devices, etc.

#### (1)Long service life and high rigidity

By adopting a unique roller retention method, the effective contact length of the rollers has been increased by 1.7 times compared to traditional products. Moreover, due to the shortened pitch intervals and increased number of rollers, the rigidity has been enhanced by 2 times, resulting in a 6-fold increase in service life. Therefore, for the vibration and shock issues that are prone to occur in the linear motion section, a fully safe design can be achieved.


#### (2)Smooth movement

In the WVR type, each roller is separated and held by the cage, and due to the fact that the roller pockets in the cage have a surface contact with the rollers, it has good lubricating oil retention, resulting in less wear and enabling smooth rolling motion.

#### (3)High corrosion resistance

The WVR and WVB series also offer stainless steel types with excellent corrosion resistance.

#### 2. Structure



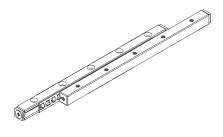
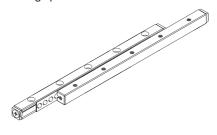

The baffles of V1 to V4 are circular...

Figure 1 shows the structure of the crossed roller guide rail type WVR and the ball guide rail type WVB.

# 3. Types and Specialties


#### Crossed roller guide rail WVR type

The cage that holds the precision rollers arranged perpendicularly to each other is a small, high-rigidity linear motion system that only moves along the V-shaped groove of the track for a distance of 1/2 of its stroke.



#### Ball guide WVB type

The ball retainer that holds the precision steel balls at short pitch intervals only moves in the V-shaped groove of the track for half of the travel distance, making it a linear motion system with low friction and high precision.



### 4. Rated Load and Rated Life

#### (1)Rated loads in all directions

The basic dynamic load ratings (CZ) and (C0Z) in the size chart represent the values for one rolling element in the direction shown in the figure. When calculating the rated life, the basic dynamic load ratings (CZ) and (C0Z) for the actual number of rolling elements in use can be calculated according to the following formula.

Cz: The basic dynamic load rating (kN) of one rolling element in the size table

Coz: The basic rated static load (kN) of one rolling element in the size table

- Z: The number of rolling elements (the quantity of rolling elements within the effective load-carrying area)
- P: Roller pitch (refer to dimension table A 7-8 to A 7-25)

WVR type is used

| Load direction                               | C <sub>L</sub> C <sub>OL</sub>                                                                                 | C <sub>T</sub> C <sub>OT</sub> ■                                                                                              |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Basic dynamic load rating C(kN)              | $C=C_L=\left\{\left(\frac{Z}{2}-1\right)x2P\right\}^{\frac{1}{36}}x\left(\frac{Z}{2}\right)^{\frac{3}{4}}xC_Z$ | $C=2^{\frac{7}{9}}=\left\{ \left(\frac{Z}{2}-1\right)x2P\right\}^{\frac{1}{36}}x\left(\frac{Z}{2}\right)^{\frac{3}{4}}xC_{Z}$ |
| Basic static load rating C <sub>0</sub> (kN) | $C_0 = C_{0L} = \frac{Z}{2} \times C_{0Z}$                                                                     | $C_{0T}=2x\frac{Z}{2}xC_{0Z}$                                                                                                 |

Note:  $\frac{Z}{2}$  Discard the decimal places.

WVB type is used

| TTTB type to deed                  |                                |                                      |
|------------------------------------|--------------------------------|--------------------------------------|
| Load direction                     | C <sub>L</sub> C <sub>OL</sub> | Ст<br>Сот                            |
| Basic dynamic load rating C(kN)    | $C=C_L=Z^{\frac{2}{3}}xC_Z$    | $C=2xZ^{\frac{2}{3}}xC_z$            |
| Basic static load rating $C_0(kN)$ | $C_0=C_{0L}=ZxC_{0Z}$          | C <sub>0T</sub> =2xZxC <sub>0Z</sub> |

#### (2)Static safety factor fs

For WVR and WVB types, when they are at rest or in operation, they may be subjected to unexpected external forces such as inertial forces caused by vibration, shock, or start-stop. It is necessary to consider the static safety factor for such load effects.

$$f_s = \frac{C_0}{P_C}$$

fs : Static safety factor

 $C_0$ : Basic static rated load (kN)

Pc: Calculated load value (kN)

Table 1 Benchmark Values of Static Safety Factor (fs)

| Use machinery      | Load conditions                        | The lower<br>limit of fs |
|--------------------|----------------------------------------|--------------------------|
| General industrial | When there is no<br>vibration or shock | 1~1.3                    |
| machinery          | When there is vibration or shock       | 2~3                      |

# Crossed roller guide rails / ball guide rails

# WV series

#### (3) Calculate the rated life.

At WODTOP, the rated life of ball guides is defined as 50km, and that of roller guides is defined as 100km. The rated life (L10) can be calculated by the following formula based on the basic dynamic load rating (C) and the load (PC) acting on the LM rolling guide.

When using steel ball rails (with a basic dynamic load rating of 50 km)

$$L_{10} = \left(\frac{C}{P_C}\right)^3 \times 50$$
 ......(1) C: Basic dynamic rated load (kN)

When using a guide rail with rollers (using a basic dynamic load rating of 100 km)

$$L_{10} = \left(\frac{C}{P_C}\right)^{\frac{10}{3}} \times 100$$
 .....(2)

When comparing the rated life (L10), it is necessary to take into account which of the basic dynamic load ratings is defined as 50 km or 100 km, and convert the basic dynamic load rating as required according to ISO 14728-1. The basic dynamic load rating conversion formula stipulated in ISO is:

When using guide rails with steel balls

$$C_{100} = \frac{C_{50}}{1.26}$$
 C<sub>50</sub>: The basic dynamic load rating with a rated life of 50,000 km.   
C<sub>100</sub>: The basic dynamic load rating with a rated life of 100,000 km.

When using a guide rail with rollers

$$C_{100} = \frac{C_{50}}{1.23}$$

#### (4) Calculation of rated life when considering conditions of use

In practical applications, due to the fact that most operations are accompanied by vibration and shock, the load acting on crossed roller guides and ball guides constantly changes, making it difficult to accurately grasp. Additionally, the hardness of the rolling surface, the ambient temperature during use, and the use of sliders in a tight state can also have a significant impact on lifespan. Considering these conditions, the rated life (L10m) taking into account the usage conditions can be calculated by the following formulas (3) and (4).

Considering the coefficient  $\alpha$  of the usage conditions

$$\alpha = \frac{f_T}{f_W}$$
 
$$\alpha : \text{ Taking into account the coefficient of the usage conditions}$$
 
$$f_T : \text{ temperature coefficient} \qquad \text{(Refer to Figure 1.)}$$
 
$$f_W : \text{ Load factor} \qquad \text{(Refer to Table 2.)}$$

Rated life L10m considering the usage conditions

When using guide rails with steel balls

$$L_{10m} = \left(\alpha \times \frac{C}{P_C}\right)^3 \times 50 \qquad ......(3) \qquad \begin{array}{c} L_{10m} : \text{ Rated life considering the conditions of use} & (km) \\ C_0 : \text{ Basic dynamic rated load} & (kN) \\ P_C : \text{ Calculated value of radial load} & (kN) \\ \end{array}$$

When using a guide rail with rollers

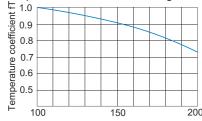
$$L_{10m} = \left(\alpha \times \frac{C}{P_C}\right)^{\frac{10}{3}} \times 100$$
 .....(4)

#### (5)Calculate the lifespan time.

After obtaining the rated life (L10), if the stroke length and the number of reciprocations per minute remain constant, the working life time can be calculated using the following formula.

$$L_{h} = \frac{L_{10} \times 10^{6}}{2 \times \ell_{s} \times n_{1} \times 60}$$

$$L_{h} : \text{ Rated life considering the conditions of use} \qquad (h)$$


$$\ell_{s} : \text{ Basic dynamic rated load} \qquad (mm)$$

$$n_{1} : \text{ Calculated value of radial load} \qquad (min^{-1})$$

# Crossed roller guide rails / ball guide rails

#### (6) fT: Temperature coefficient

When the operating temperature of the WVR or WVB type exceeds 100°C, the adverse effects of high temperature should be taken into account, and the basic rated load should be multiplied by the temperature coefficient indicated in Figure 1.



Rolling surface temperature (°C)

Figure 1 Temperature Coefficient (fT)

Note: If the ambient temperature exceeds 100°C, please consult WODTOP...

#### (7)fw: Load factor

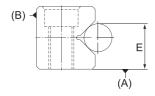

Generally, mechanical devices that perform reciprocating motion are often accompanied by vibration or shock during operation. It is particularly difficult to accurately calculate the vibration generated at high speeds and all the shocks caused by frequent starts and stops. Therefore, when the actual load acting on the WVR type or WVB type cannot be obtained, or when the influence of speed and vibration is significant, please divide the basic dynamic load rating (C) by the load factor obtained empirically in Table 2.

Table 2 Load Coefficient(fw)

| Vibration, shock | Velocity (V)                     | fw      |
|------------------|----------------------------------|---------|
| tiny             | At very low speeds, V ≤ 0.25 m/s | 1~1.2   |
| Little           | At low speeds, 0.25 < V ≤ 1 m/s  | 1.2~1.5 |

#### (8)Precision specification

The accuracy of the special tracks for crossed roller guides is classified into high grade (H) and precision grade (P) as shown in Table 3.



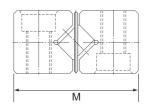
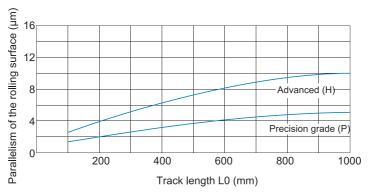
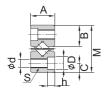
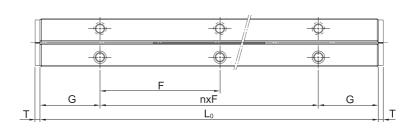


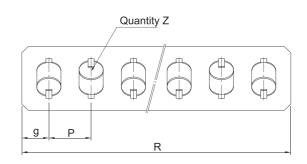

Table 3 Precision Specifications of V-shaped Specialized Track Unit: mm

| accuracy level                                    | Advanced  | Precision grade |
|---------------------------------------------------|-----------|-----------------|
| Marking                                           |           | В               |
| Project                                           | П         | Г               |
| The parallelism of rolling surfaces A and B       | According | to Figure 3     |
| The allowable dimensiona I tolerance at height E  | ±0.02     | ±0.01           |
| Group mutual tolerance note at height E           | 0.01      | 0.005           |
| The permissible dimensional tolerance for width M | 0<br>-0.2 | 0<br>-0.1       |

The group mutual tolerance of height E is applicable to four tracks used on the same plane.

Figure 2



Figure 3 Parallelism between the track length and the rolling surface

# 5. Crossed roller guide rail WVR type (WVR1)









Unit: mm

| Nominal      | maximum   |       |          |         |      |   | ľ    | Main d  | dimen | sions |    |     |     |     |      |   |     |               | A <b>l</b> lowable<br>preload | Basic<br>load (pe | rated<br>er ro <b>l</b> ler)) | Orbit<br>(Mass) |
|--------------|-----------|-------|----------|---------|------|---|------|---------|-------|-------|----|-----|-----|-----|------|---|-----|---------------|-------------------------------|-------------------|-------------------------------|-----------------|
| model        | Itinerary | Combi | ned dime | ensions |      |   | Inst | allatic | n din | ensio | ns |     |     |     |      |   |     | Roller        | δ                             | Cz                | C <sub>0Z</sub>               | ( /             |
| model        |           | М     | Α        | Lo      | nxF  | G | В    | С       | S     | d     | D  | h   | Т   | Da  | R    | g | Р   | Quantity<br>Z | μm                            | kN                | kN                            | kg/m            |
| WVR 1-20x5Z  | 12        |       |          | 20      | 1x10 |   |      |         |       |       |    |     |     |     | 14   |   |     | 5             |                               |                   |                               |                 |
| WVR 1-30x7Z  | 22        |       |          | 30      | 2x10 |   |      |         |       |       |    |     |     |     | 19   |   |     | 7             |                               |                   |                               |                 |
| WVR 1-40x10Z | 27        |       |          | 40      | 3x10 |   |      |         |       |       |    |     |     |     | 26.5 |   |     | 10            |                               |                   |                               |                 |
| WVR 1-50x13Z | 32        | 8.5   | 4        | 50      | 4x10 | 5 | 3.9  | 1.8     | M2    | 1.65  | 3  | 1.4 | 1.6 | 1.5 | 34   | 2 | 2.5 | 13            | -2                            | 0.152             | 0.153                         | 0.11            |
| WVR 1-60x16Z | 37        |       |          | 60      | 5x10 |   |      |         |       |       |    |     |     |     | 41.5 |   |     | 16            |                               |                   |                               |                 |
| WVR 1-70x19Z | 42        |       |          | 70      | 6x10 |   |      |         |       |       |    |     |     |     | 49   |   |     | 19            |                               |                   |                               |                 |
| WVR 1-80x21Z | 52        |       |          | 80      | 7x10 |   |      |         |       |       |    |     |     |     | 54   |   |     | 21            |                               |                   |                               |                 |

#### Example of the composition of the nominal model

WVR1 -30 H x 8Z

Precision marking The number of rollers or steel balls

Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 40/50)
The nominal model of the combination (WVB for ball guide rails)

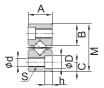
Note: The above nominal model number indicates a set of devices, which is a combination of 4 LM tracks and 2 retainers.

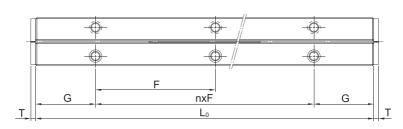
When ball guides with ball retainers are required, please refer to Type B ball retainers and specify the number of steel balls needed.

(For example) WVB1-50H x 12Z Number of steel balls

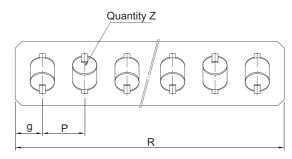
The mass in the dimension table is expressed as the value per 1m of each rail.

Stainless steel types with corrosion resistance can also be provided. (Marked as M, for example, WVR1M)


When fixing the dedicated rail for the WVR1 type, precision instrument cross recessed small screws (No. 0 small screws) can be used.


| Nominal model         | Туре                                   | Nominal diameter x pitch of the screw |
|-----------------------|----------------------------------------|---------------------------------------|
| WVR1 type is used for | No. 0 pan head small screws (Class 3)) | M1.4x0.3                              |

Japanese Camera Industry Standard JCIS 10-70


Precision instrument cross recessed small screws (No. 0 small screws))

# 6. Crossed Roller Guide WVR Type (WVR2)









Unit: mm

| Nominal       | maximum   |       |         |         |       |     |     | M       | ain di | mensi | ions |   |     |    |     |     |   |               | Allowable preload | Basic<br>load (pe | or roller)) | Orbit<br>(Mass) |
|---------------|-----------|-------|---------|---------|-------|-----|-----|---------|--------|-------|------|---|-----|----|-----|-----|---|---------------|-------------------|-------------------|-------------|-----------------|
| model         | Itinerary | Combi | ned dim | ensions |       |     | Ins | tallati | on di  | mensi | ions |   |     |    |     |     |   | Roller        | amount<br>δ<br>μm | Cz                | Coz         | ()              |
|               |           | М     | Α       | Lo      | nxF   | G   | В   | С       | S      | d     | D    | h | Т   | Da | R   | g   | Р | Quantity<br>Z | μιιι              | kN                | kN          | kg/m            |
| WVR 2-30x5Z   | 18        |       |         | 30      | 1x15  |     |     |         |        |       |      |   |     |    | 21  |     |   | 5             |                   |                   |             |                 |
| WVR 2-45x8Z   | 24        |       |         | 45      | 2x15  |     |     |         |        |       |      |   |     |    | 33  |     |   | 8             |                   |                   |             |                 |
| WVR 2-60x11Z  | 30        |       |         | 60      | 3x15  |     |     |         |        |       |      |   |     |    | 45  |     |   | 11            |                   |                   |             |                 |
| WVR 2-75x13Z  | 44        |       |         | 75      | 4x15  |     |     |         |        |       |      |   |     |    | 53  |     |   | 13            |                   |                   |             |                 |
| WVR 2-90x16Z  | 50        |       |         | 90      | 5x15  |     |     |         |        |       |      |   |     |    | 65  |     |   | 16            |                   |                   |             |                 |
| WVR 2-105x18Z | 64        | 12    | 6       | 105     | 6x15  | 7.5 | 5.6 | 2.5     | МЗ     | 2.55  | 4.4  | 2 | 1.5 | 2  | 73  | 2.5 | 4 | 18            | -3                | 0.276             | 0.271       | 0.23            |
| WVR 2-120x21Z | 70        |       |         | 120     | 7x15  |     |     |         |        |       |      |   |     |    | 85  |     |   | 21            |                   |                   |             |                 |
| WVR 2-135x23Z | 84        |       |         | 135     | 8x15  |     |     |         |        |       |      |   |     |    | 93  |     |   | 23            |                   |                   |             |                 |
| WVR 2-150x26Z | 90        |       |         | 150     | 9x15  |     |     |         |        |       |      |   |     |    | 105 |     |   | 26            |                   |                   |             |                 |
| WVR 2-165x29Z | 96        |       |         | 165     | 10x15 |     |     |         |        |       |      |   |     |    | 117 |     |   | 29            |                   |                   |             |                 |
| WVR 2-180x32Z | 102       |       |         | 180     | 11x15 |     |     |         |        |       |      |   |     |    | 129 |     |   | 32            |                   |                   |             |                 |

Example of the composition of the nominal model

WVR2 -30 H x 6Z

Precision marking The number of rollers or steel balls

Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 90/105)

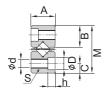
The nominal model of the combination (WVB for ball guide rails)

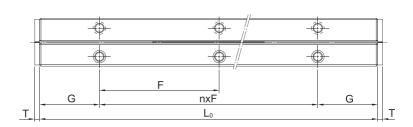
Note: The above nominal model number indicates a set of devices, which is a combination of 4 LM tracks and 2 retainers.

When ball guides with ball retainers are required, please refer to Type B ball retainers and specify the number of steel balls needed.

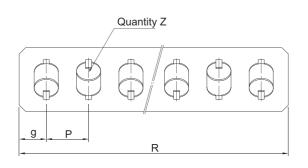
(For example) WVB2-90H x  $\frac{15Z}{}$  Number of steel balls

The mass in the size table is expressed as the value per 1m of each rail.


Stainless steel types with corrosion resistance can also be provided. (Marked as M, for example, WVR2M)


When fixing the dedicated rail for the WVR2 type, precision instrument cross recessed small screws (No. 0 small screws) can be used.

| Nominal model        | Туре                                  | Nominal diameter x pitch of the screw |
|----------------------|---------------------------------------|---------------------------------------|
| WVR2 type<br>is used | No. 0 pan head small screws (Class 3) | M2x0.4                                |


Cross recessed small screws JIS B 1111 (pan head small screws)

# 7. Crossed Roller Guide WVR Type (WVR3)









Unit: mm

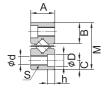
| Nominal       | maximum   |       |          |         |       |      | ı     | Main (  | dimer | sions  | ;  |     |   |    |     |   |   |               | Allowable<br>preload | Basic<br>load (pe | or rollor))     | Orbit<br>(Mass) |
|---------------|-----------|-------|----------|---------|-------|------|-------|---------|-------|--------|----|-----|---|----|-----|---|---|---------------|----------------------|-------------------|-----------------|-----------------|
| model         | Itinerary | Combi | ned dime | ensions |       |      | Insta | allatio | n dim | ensior | ns |     |   |    |     |   |   | Roller        | amount<br>δ          | Cz                | C <sub>0Z</sub> | ,               |
|               |           | М     | Α        | Lo      | nxF   | G    | В     | С       | S     | d      | D  | h   | Т | Da | R   | g | Р | Quantity<br>Z | μm                   | kN                | kN              | kg/m            |
| WVR 3-50x7Z   | 28        |       |          | 50      | 1x25  |      |       |         |       |        |    |     |   |    | 36  |   |   | 7             |                      |                   |                 |                 |
| WVR 3-75x8Z   | 48        |       |          | 75      | 2x25  |      |       |         |       |        |    |     |   |    | 51  |   |   | 10            |                      |                   |                 |                 |
| WVR 3-100x14Z | 58        |       |          | 100     | 3x25  |      |       |         |       |        |    |     |   |    | 71  |   |   | 14            |                      |                   |                 |                 |
| WVR 3-125x17Z | 78        |       |          | 125     | 4x25  |      |       |         |       |        |    |     |   |    | 86  |   |   | 17            |                      |                   |                 |                 |
| WVR 3-150x21Z | 88        |       |          | 150     | 5x25  |      |       |         |       |        |    |     |   |    | 106 |   |   | 21            |                      |                   |                 |                 |
| WVR 3-175x24Z | 108       | 18    | 8        | 175     | 6x25  | 12.5 | 8.3   | 3.5     | M4    | 3.3    | 6  | 3.1 | 2 | 3  | 121 | 3 | 5 | 24            | -4                   | 0.639             | 0.611           | 0.45            |
| WVR 3-200x28Z | 118       |       |          | 200     | 7x25  |      |       |         |       |        |    |     |   |    | 141 |   |   | 28            |                      |                   |                 |                 |
| WVR 3-225x31Z | 138       |       |          | 225     | 8x25  |      |       |         |       |        |    |     |   |    | 156 |   |   | 31            |                      |                   |                 |                 |
| WVR 3-250x35Z | 148       |       |          | 250     | 9x25  |      |       |         |       |        |    |     |   |    | 176 |   |   | 35            |                      |                   |                 |                 |
| WVR 3-275x38Z | 168       |       |          | 275     | 10x25 |      |       |         |       |        |    |     |   |    | 191 |   |   | 38            |                      |                   |                 |                 |
| WVR 3-300x42Z | 178       |       |          | 300     | 11x25 |      |       |         |       |        |    |     |   |    | 211 |   |   | 42            |                      |                   |                 |                 |

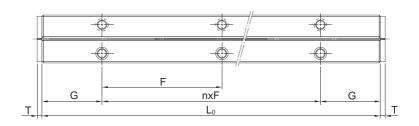
#### Example of the composition of the nominal model

WVR3 -75 H x 9Z

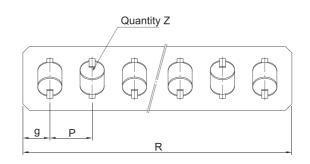
Precision marking The number of rollers or steel balls

Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 100/125)
The nominal model of the combination (WVB for ball guide rails)


Note: The above nominal model number indicates a set of devices, which is a combination of 4 LM tracks and 2 retainers.


When ball guides with ball retainers are required, please refer to Type B ball retainers and specify the number of steel balls needed.

(For example) WVB3-150H x 20Z Number of steel balls


The mass in the size table is expressed as the value per 1m of each rail. Stainless steel types with corrosion resistance can also be provided. (Marked with M, for example, WVR3M)

# 8. Cross Roller Guide WVR Type (WVR4)









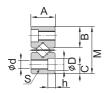
Unit: mm

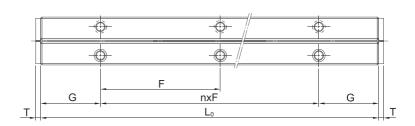
| Nominal       | maximum   |    |          |         |       |    |      | Mair   | n dime  | nsion | ıs   |     |   |    |     |     |   |               | Allowable<br>preload | Basic<br>load (pe | rated<br>er roller)) | Orbit<br>(Mass) |
|---------------|-----------|----|----------|---------|-------|----|------|--------|---------|-------|------|-----|---|----|-----|-----|---|---------------|----------------------|-------------------|----------------------|-----------------|
| model         | Itinerary |    | ined dim | ensions |       |    | In   | stalla | tion di | mens  | ions |     |   |    |     |     |   | Roller        | amount<br>δ          | Cz                | C <sub>0Z</sub>      |                 |
|               |           | М  | Α        | Lo      | nxF   | G  | В    | C      | S       | d     | D    | h   | Т | Da | R   | g   | Р | Quantity<br>Z | μm                   | kN                | kN                   | kg/m            |
| WVR 4-80x7Z   | 58        |    |          | 80      | 1x40  |    |      |        |         |       |      |     |   |    | 51  |     |   | 7             |                      |                   |                      |                 |
| WVR 4-120x11Z | 82        |    |          | 120     | 2x40  |    |      |        |         |       |      |     |   |    | 79  |     |   | 11            |                      |                   |                      |                 |
| WVR 4-160x15Z | 106       |    |          | 160     | 3x40  |    |      |        |         |       |      |     |   |    | 107 |     |   | 15            |                      |                   |                      |                 |
| WVR 4-200x19Z | 130       |    |          | 200     | 4x40  |    |      |        |         |       |      |     |   |    | 135 |     |   | 19            |                      |                   |                      |                 |
| WVR 4-240x23Z | 154       |    |          | 240     | 5x40  |    |      |        |         |       |      |     |   |    | 163 |     |   | 23            |                      |                   |                      |                 |
| WVR 4-280x27Z | 178       | 22 | 11       | 280     | 6x40  | 20 | 10.2 | 4.5    | M5      | 4.3   | 8    | 4.2 | 2 | 4  | 191 | 4.5 | 7 | 27            | -5                   | 1.38              | 1.35                 | 8.0             |
| WVR 4-320x31Z | 202       |    |          | 320     | 7x40  |    |      |        |         |       |      |     |   |    | 219 |     |   | 31            |                      |                   |                      |                 |
| WVR 4-360x35Z | 226       |    |          | 360     | 8x40  |    |      |        |         |       |      |     |   |    | 247 |     |   | 35            |                      |                   |                      |                 |
| WVR 4-400x39Z | 250       |    |          | 400     | 9x40  |    |      |        |         |       |      |     |   |    | 275 |     |   | 39            |                      |                   |                      |                 |
| WVR 4-440x43Z | 274       |    |          | 440     | 10x40 |    |      |        |         |       |      |     |   |    | 303 |     |   | 43            |                      |                   |                      |                 |
| WVR 4-480x47Z | 298       |    |          | 480     | 11x40 |    |      |        |         |       |      |     |   |    | 331 |     |   | 47            |                      |                   |                      |                 |

#### Example of the composition of the nominal model

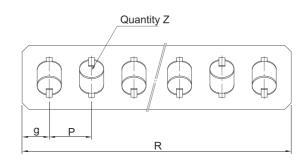
WVR4 -80 P x 9Z
Precision marking The number of rollers or steel balls

Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 120/160) The nominal model of the combination (WVB for ball guide rails)


Note: The above nominal model number indicates a set of equipment consisting of 4 LM tracks and 2 retainers.


When ball guides with ball retainers are required, please refer to Type B ball retainers and specify the number of steel balls needed.

(For example) WVB4-200H x 17Z Number of steel balls


The mass in the dimension table is expressed as the value per 1m of each rail. Stainless steel types with corrosion resistance can also be provided. (Marked with M, for example, WVR4M)

# 9. Crossed Roller Guide WVR Type (WVR6)









Unit: mm

| Nominal       | maximum   |    |         |         |       |    |      | М      | ain di | mens | ions |     |     |    |     |   |    |               | A <b>ll</b> owable<br>preload | Basic<br>load (pe | rated<br>er ro <b>ll</b> er)) | Orbit<br>(Mass) |
|---------------|-----------|----|---------|---------|-------|----|------|--------|--------|------|------|-----|-----|----|-----|---|----|---------------|-------------------------------|-------------------|-------------------------------|-----------------|
| model         | Itinerary |    | ned dim | ensions |       |    | Ins  | tallat | ion di | mens | ions |     |     |    |     |   |    | Roller        | amount                        | Cz                | Coz                           | ,               |
|               |           | М  | Α       | Lo      | nxF   | G  | В    | C      | S      | d    | D    | h   | Т   | Da | R   | g | Р  | Quantity<br>Z | μm                            | kN                | kN                            | kg/m            |
| WVR 6-100x7Z  | 56        |    |         | 100     | 1x50  |    |      |        |        |      |      |     |     |    | 72  |   |    | 7             |                               |                   |                               |                 |
| WVR 6-150x10Z | 96        |    |         | 150     | 2x50  |    |      |        |        |      |      |     |     |    | 102 |   |    | 10            |                               |                   |                               |                 |
| WVR 6-200x13Z | 136       |    |         | 200     | 3x50  |    |      |        |        |      |      |     |     |    | 132 |   |    | 13            |                               |                   |                               |                 |
| WVR 6-250x17Z | 156       |    |         | 250     | 4x50  |    |      |        |        |      |      |     |     |    | 172 |   |    | 17            |                               |                   |                               |                 |
| WVR 6-300x20Z | 196       |    |         | 300     | 5x50  |    |      |        |        |      |      |     |     |    | 202 |   |    | 20            |                               |                   |                               |                 |
| WVR 6-350x24Z | 216       | 30 | 15      | 350     | 6x50  | 25 | 14.4 | 6      | M6     | 5.2  | 9.5  | 5.2 | 3.2 | 6  | 242 | 6 | 10 | 24            | -7                            | 3.78              | 3.78                          | 1.5             |
| WVR 6-400x27Z | 256       |    |         | 400     | 7x50  |    |      |        |        |      |      |     |     |    | 272 |   |    | 27            |                               |                   |                               |                 |
| WVR 6-450x31Z | 276       |    |         | 450     | 8x50  |    |      |        |        |      |      |     |     |    | 312 |   |    | 31            |                               |                   |                               |                 |
| WVR 6-500x34Z | 316       |    |         | 500     | 9x50  |    |      |        |        |      |      |     |     |    | 342 |   |    | 34            |                               |                   |                               |                 |
| WVR 6-550x37Z | 336       |    |         | 550     | 10x50 |    |      |        |        |      |      |     |     |    | 382 |   |    | 38            |                               |                   |                               |                 |
| WVR 6-600x41Z | 376       |    |         | 600     | 11x50 |    |      |        |        |      |      |     |     |    | 412 |   |    | 41            |                               |                   |                               |                 |

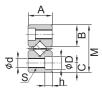
#### Example of the composition of the nominal model

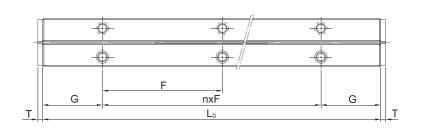
WVR6 -100 P x 6Z

Precision marking The number of rollers or steel balls

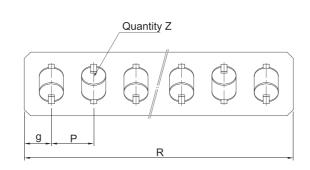
Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 300/400) The nominal model of the combination (WVB for ball guide rails)

Note: The above nominal model number indicates a set of equipment consisting of 4 LM tracks and 2 retainers.


When ball guides with ball retainers are required, please refer to Type B ball retainers and specify the number of steel balls needed.


(For example) WVB6-300H x 18Z

-Number of steel balls


The mass in the size table is expressed as the value per 1m of each rail. Stainless steel types with corrosion resistance can also be provided. (Marked with M, for example, WVR6M)

# 10. Crossed roller guide rail WVR type (WVR9)









Unit: mm

|                |           |         |          |         |        |    |      |        |         |       |       |     |   |        |     |     |    |               |                      |                   |                              | t. 111111       |
|----------------|-----------|---------|----------|---------|--------|----|------|--------|---------|-------|-------|-----|---|--------|-----|-----|----|---------------|----------------------|-------------------|------------------------------|-----------------|
| Nominal        | maximum   |         |          |         |        |    |      | Maii   | n dim   | ensio | ns    |     |   |        |     |     |    |               | Allowable<br>preload | Basic<br>load (pe | rated<br>r ro <b>ll</b> er)) | Orbit<br>(Mass) |
| model          | Itinerary |         | ined dim | ensions |        |    | Ir   | stalla | ition c | limen | sions |     |   |        |     |     |    | Roller        | amount δ             | Cz                | C <sub>0Z</sub>              |                 |
|                |           | М       | Α        | Lo      | nxF    | G  | В    | C      | S       | d     | D     | h   | Т | Da     | R   | g   | Р  | Quantity<br>Z | μm                   | kN                | kN                           | kg/m            |
| WVR 9-200x10Z  | 118       |         |          | 200     | 1x100  |    |      |        |         |       |       |     |   |        | 141 |     |    | 10            |                      |                   |                              |                 |
| WVR 9-300x15Z  | 178       |         |          | 300     | 2x100  |    |      |        |         |       |       |     |   |        | 211 |     |    | 15            |                      |                   |                              |                 |
| WVR 9-400x20Z  | 238       |         |          | 400     | 3x100  |    |      |        |         |       |       |     |   |        | 281 |     |    | 20            |                      |                   |                              |                 |
| WVR 9-500x25Z  | 298       |         |          | 500     | 4x100  |    |      |        |         |       |       |     |   |        | 351 |     |    | 25            |                      |                   |                              |                 |
| WVR 9-600x30Z  | 358       |         |          | 600     | 5x100  |    |      |        |         |       |       |     |   |        | 421 |     |    | 30            |                      |                   |                              |                 |
| WVR 9-700x35Z  | 418       | 40      | 20       | 700     | 6x100  | 50 | 19.2 | 8      | M8      | 6.8   | 10.5  | 6.2 | 4 | 9      | 491 | 7.5 | 14 | 35            | -10                  | 9.53              | 9.48                         | 3.2             |
| WVR 9-800x40Z  | 478       | (40.74) |          | 800     | 7x100  |    |      |        |         |       |       |     |   | (9.525 | 561 |     |    | 40            |                      |                   |                              |                 |
| WVR 9-900x45Z  | 538       |         |          | 900     | 8x100  |    |      |        |         |       |       |     |   |        | 631 |     |    | 45            |                      |                   |                              |                 |
| WVR 9-1000x50Z | 598       |         |          | 1000    | 9x100  |    |      |        |         |       |       |     |   |        | 701 |     |    | 50            |                      |                   |                              |                 |
| WVR 9-1100x55Z | 658       |         |          | 1100    | 10x100 |    |      |        |         |       |       |     |   |        | 771 |     |    | 55            |                      |                   |                              |                 |
| WVR 9-1200x60Z | 718       |         |          | 1200    | 11x100 |    |      |        |         |       |       |     |   |        | 841 |     |    | 60            |                      |                   |                              |                 |

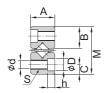
#### Example of the composition of the nominal model

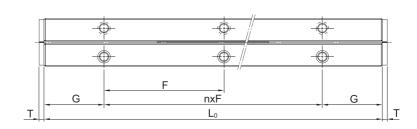
WVR9 -600 H x 30Z

Precision marking

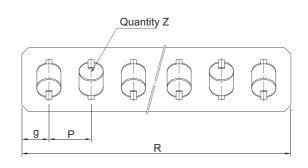
The number of rollers or steel balls

Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 300/400)
The nominal model of the combination (WVB for ball guide rails)


Note: The above nominal model number indicates a set of devices, which is a combination of 4 LM tracks and 2 retainers.


When ball guides with ball retainers are required, please refer to Type B ball retainers and specify the number of steel balls needed.

(For example) WVB9-700H x 33Z Number of steel balls


The mass in the size table is expressed as the value per 1m of each rail. Stainless steel types with corrosion resistance can also be provided. (Marked with M, for example, WVR9M)

# 11.Cross roller guide WVR type (WVR12)









Unit: mm

| Nominal         | maximum   |         |          |         |        |    |    | Mai     | n dim   | ensio | ns    |     |   |          |     |      |    |                    | Allowable<br>preload<br>amount | Basic<br>load (pe |                 | Orbit<br>(Mass) |
|-----------------|-----------|---------|----------|---------|--------|----|----|---------|---------|-------|-------|-----|---|----------|-----|------|----|--------------------|--------------------------------|-------------------|-----------------|-----------------|
| model           | Itinerary |         | ined dim | ensions |        |    | Ir | nstalla | ation c | limen | sions |     |   |          |     |      |    | Roller<br>Quantity | δ<br>μm                        | Cz                | C <sub>0Z</sub> | <u> </u>        |
|                 |           | М       | Α        | Lo      | nxF    | G  | В  | C       | S       | d     | D     | h   | Т | Da       | R   | g    | Р  | Zuaniity           | μΠ                             | kN                | kN              | kg/m            |
| WVR 12-200x7Z   | 110       |         |          | 200     | 1x100  |    |    |         |         |       |       |     |   |          | 145 |      |    | 7                  |                                |                   |                 |                 |
| WVR 12-300x10Z  | 190       |         |          | 300     | 2x100  |    |    |         |         |       |       |     |   |          | 205 |      |    | 10                 |                                |                   |                 |                 |
| WVR 12-400x14Z  | 230       |         |          | 400     | 3x100  |    |    |         |         |       |       |     |   |          | 285 |      |    | 14                 |                                |                   |                 |                 |
| WVR 12-500x17Z  | 310       |         |          | 500     | 4x100  |    |    |         |         |       |       |     |   |          | 345 |      |    | 17                 |                                |                   |                 |                 |
| WVR 12-600x21Z  | 350       |         |          | 600     | 5x100  |    |    |         |         |       |       |     |   |          | 425 |      |    | 21                 |                                |                   |                 |                 |
| WVR 12-700x24Z  | 430       | 58      | 28       | 700     | 6x100  | 50 | 28 | 12      | M10     | 8.5   | 14    | 8.2 | 5 | 12       | 485 | 12.5 | 20 | 24                 | -13                            | 17.6              | 17.2            | 5.3             |
| WVR 12-800x28Z  | 470       | (57.86) |          | 800     | 7x100  |    |    |         |         |       |       |     |   | (11.906) | 565 |      |    | 28                 |                                |                   |                 |                 |
| WVR 12-900x31Z  | 550       |         |          | 900     | 8x100  |    |    |         |         |       |       |     |   |          | 625 |      |    | 31                 |                                |                   |                 |                 |
| WVR 12-1000x34Z | 630       |         |          | 1000    | 9x100  |    |    |         |         |       |       |     |   |          | 685 |      |    | 34                 |                                |                   |                 |                 |
| WVR 12-1100x38Z | 670       |         |          | 1100    | 10x100 |    |    |         |         |       |       |     |   |          | 765 |      |    | 38                 |                                |                   |                 |                 |
| WVR 12-1200x41Z | 750       |         |          | 1200    | 11x100 |    |    |         |         |       |       |     |   |          | 825 |      |    | 41                 |                                |                   |                 |                 |

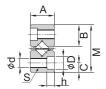
#### Example of the composition of the nominal model

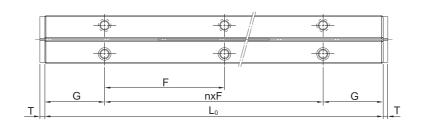
WVR12 -200 P x 9Z

Precision marking. The number of rollers or steel balls

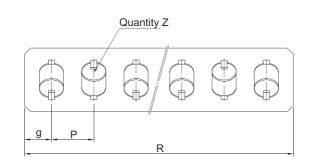
Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 300/400)
The nominal model of the combination (WVB for ball guide rails)

Note: The above nominal model number indicates a set of devices, which is a combination of 4 LM tracks and 2 retainers.


When ball guides with ball retainers are required, please refer to Type B ball retainers and specify the number of steel balls needed.


(For example) WVB12-700H x 20Z

Number of steel balls


The mass in the size table is expressed as the value per 1m of each rail. Stainless steel types with corrosion resistance can also be provided. (Marked with M, for example, WVR12M)

# 12. Crossed Roller Guide WVR Type (WVR15)









Unit: mm

| Nominal         | maximum   |         |          |         |        |    |      |         | Main   | dime  | nsions | 3    |   |        |     |    |    |               | A <b>ll</b> owable<br>preload | Basic<br>load (pe | r rollor\\      | Orbit<br>(Mass) |
|-----------------|-----------|---------|----------|---------|--------|----|------|---------|--------|-------|--------|------|---|--------|-----|----|----|---------------|-------------------------------|-------------------|-----------------|-----------------|
| model           | Itinerary |         | ned dime | ensions |        |    | Ins  | tallati | on dir | nensi | ons    |      |   |        |     |    |    | Roller        | amount<br>δ                   | Cz                | C <sub>0Z</sub> |                 |
|                 |           | М       | Α        | Lo      | nxF    | G  | В    | С       | S      | d     | D      | h    | Т | Da     | R   | g  | Р  | Quantity<br>Z | μm                            | kN                | kN              | kg/m            |
| WVR 15-300x8Z   | 190       |         |          | 300     | 2x100  |    |      |         |        |       |        |      |   |        | 205 |    |    | 8             |                               |                   |                 |                 |
| WVR 15-400x11Z  | 240       |         |          | 400     | 3x100  |    |      |         |        |       |        |      |   |        | 280 |    |    | 11            |                               |                   |                 |                 |
| WVR 15-500x13Z  | 340       |         |          | 500     | 4x100  |    |      |         |        |       |        |      |   |        | 330 |    |    | 13            |                               |                   |                 |                 |
| WVR 15-600x16Z  | 390       |         |          | 600     | 5x100  |    |      |         |        |       |        |      |   |        | 405 |    |    | 16            |                               |                   |                 |                 |
| WVR 15-700x19Z  | 440       |         |          | 700     | 6x100  |    |      |         |        |       |        |      |   |        | 480 |    |    | 19            |                               |                   |                 |                 |
| WVR 15-800x22Z  | 490       | 71      | 36       | 800     | 7x100  | 50 | 34.4 | 14      | M12    | 10.5  | 17.5   | 10.2 | 6 | 15     | 555 | 15 | 25 | 22            | -16                           | 27.9              | 26.8            | 8.3             |
| WVR 15-900x25Z  | 540       | (71.11) |          | 900     | 8x100  |    |      |         |        |       |        |      |   | 15.081 | 630 |    |    | 25            |                               |                   |                 |                 |
| WVR 15-1000x27Z | 640       |         |          | 1000    | 9x100  |    |      |         |        |       |        |      |   |        | 680 |    |    | 27            |                               |                   |                 |                 |
| WVR 15-1100x30Z | 690       |         |          | 1100    | 10x100 |    |      |         |        |       |        |      |   |        | 755 |    |    | 30            |                               |                   |                 |                 |
| WVR 15-1200x33Z | 740       |         |          | 1200    | 11x100 |    |      |         |        |       |        |      |   |        | 830 |    |    | 33            |                               |                   |                 |                 |

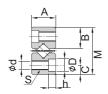
#### Example of the composition of the nominal model

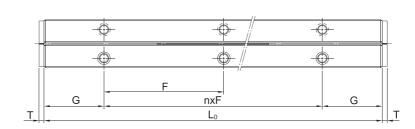
 $WVR15 - 300 H \times 10Z$ 

Precision marking The number of rollers or steel balls

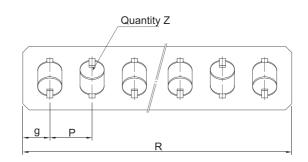
Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 300/400))
The nominal model of the combination (WVB for ball guide rails)

Note: The above nominal model number indicates a set of equipment consisting of 4 LM tracks and 2 retainers.o


When ball guides with ball retainers are required, please refer to Type B ball retainers and specify the number of steel balls needed.


(For example) WVB15-800H x 20Z Number of steel balls

The mass in the size table is expressed as the value per 1m of each rail.


Stainless steel types with corrosion resistance can also be provided. (Marked with M, for example, WVR15M)

# 13. Crossed roller guide WVR type (WVR18))







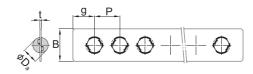


Unit: mm

| Nominal         | maximum   | Main dimensions |          |         |        |     |       |        |        |       |     | A <b>ll</b> owable<br>preload | Basic rated load (per roller)) | r roller)) | Orbit<br>(Mass) |    |     |                    |             |      |                 |          |  |  |
|-----------------|-----------|-----------------|----------|---------|--------|-----|-------|--------|--------|-------|-----|-------------------------------|--------------------------------|------------|-----------------|----|-----|--------------------|-------------|------|-----------------|----------|--|--|
| model           | Itinerary | Combi           | ined dim | ensions |        |     | Ins   | tallat | ion di | mensi | ons |                               |                                |            |                 |    |     | Roller<br>Quantity | amount<br>δ | Cz   | C <sub>0Z</sub> | (111466) |  |  |
|                 |           | М               | Α        | Lo      | nxF    | G   | В     | C      | S      | d     | D   | h                             | Т                              | Da         | R               | g  | Р   | Z                  | μm          | kN   | kN              | kg/m     |  |  |
| WVR 18-300x6Z   | 228       |                 |          | 300     | 2x100  |     |       |        |        |       |     |                               |                                |            | 186             |    |     | 6                  |             |      |                 |          |  |  |
| WVR 18-400x9Z   | 248       |                 |          | 400     | 3x100  |     |       |        |        |       |     |                               |                                |            | 276             |    |     | 9                  |             |      |                 |          |  |  |
| WVR 18-500x11Z  | 328       |                 |          |         |        | 500 | 4x100 |        |        |       |     |                               |                                |            |                 |    | 336 |                    |             | 11   |                 |          |  |  |
| WVR 18-600x13Z  | 408       |                 |          | 600     | 5x100  |     |       |        |        |       |     |                               |                                |            | 396             |    |     | 13                 |             |      |                 |          |  |  |
| WVR 18-700x16Z  | 428       |                 |          | 700     | 6x100  |     |       |        |        |       |     |                               |                                |            | 486             |    |     | 16                 |             |      |                 |          |  |  |
| WVR 18-800x18Z  | 508       | 83              | 40       | 800     | 7x100  | 50  | 40.2  | 18     | M14    | 12.5  | 20  | 12.2                          | 6                              | 18         | 546             | 18 | 30  | 18                 | -18         | 40.9 | 38.8            | 10.5     |  |  |
| WVR 18-900x20Z  | 588       |                 |          | 900     | 8x100  |     |       |        |        |       |     |                               |                                |            | 606             |    |     | 20                 |             |      |                 |          |  |  |
| WVR 18-1000x23Z | 608       |                 |          | 1000    | 9x100  |     |       |        |        |       |     |                               |                                |            | 696             |    |     | 23                 |             |      |                 |          |  |  |
| WVR 18-1100x25Z | 688       |                 |          | 1100    | 10x100 |     |       |        |        |       |     |                               |                                |            | 756             |    |     | 25                 |             |      |                 |          |  |  |
| WVR 18-1200x27Z | 768       |                 |          | 1200    | 11x100 |     |       |        |        |       |     |                               |                                |            | 816             |    |     | 27                 |             |      |                 |          |  |  |

#### Example of the composition of the nominal model

WVR18 -400 H x 10Z


The number of rollers or steel balls

Specialized track dimensions, unit: mm (Examples of dimensions for different total length combinations: 300/400)
The nominal model of the combination (WVB for ball guide rails)

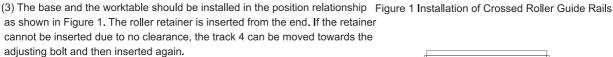
Note: The above nominal model number indicates a set of devices, which is a combination of 4 LM tracks and 2 retainers.

The mass indicated in the dimension table is given as the value per 1m for each rail. Stainless steel types with corrosion resistance can also be provided. (Marked with M, for example, WVR18M)

# 14. Ball Retainer Type B



| Nominal model |        | N   | lain dimension | Basic ra<br>(Each st | Combined |                     |                 |       |
|---------------|--------|-----|----------------|----------------------|----------|---------------------|-----------------|-------|
| Nominal model | Da     | t   | В              | Р                    | g        | C <sub>z</sub><br>N | C <sub>0Z</sub> | orbit |
| B 1           | 1.5    | 0.2 | 3.5            | 2.5                  | 2        | 7.84                | 21.6            | V1    |
| B 2           | 2      | 0.3 | 5              | 4                    | 3        | 12.7                | 39.2            | V2    |
| B 3           | 3      | 0.4 | 7              | 6                    | 4.5      | 27.5                | 87.3            | V3    |
| B 4           | 4      | 0.5 | 9              | 7                    | 4.5      | 45.1                | 155             | V4    |
| B 6           | 6      | 0.6 | 13.5           | 10                   | 6        | 98                  | 353             | V6    |
| B 9           | 9.525  | 1   | 19             | 14                   | 8.5      | 216                 | 784             | V9    |
| B 12          | 11.906 | 1   | 25             | 20                   | 12.5     | 324                 | 1420            | V12   |
| B 15          | 15.081 | 1.2 | 31             | 25                   | 15       | 490                 | 2160            | V15   |


#### 15. Installation Method

#### (1)When using the gap adjustment bolt:

Place tracks 2 and 3 closely together on the base mounting surface, and place track 1 closely on the worktable mounting surface. Then, firmly tighten the track assembly bolts

(2) Temporarily fix track 4 on the workbench.

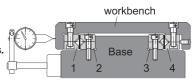
When designing, please note that the assembly bolts of the track should be capable of full locking operation even in the installed state.



(4) As shown in Figure 1, set up the dial indicator. Then, while gently pushing the worktable left and right, slowly tighten all the adjusting bolts until there is no gap left and right.

(5) Install stop blocks at the ends of the tracks.

Move the worktable and adjust the position of the cage to ensure the required stroke length is achieved.


As shown in Figure 2-1, place the roller retainer in the central part of the track. Use a torque wrench to evenly tighten the adjusting bolts (b, c, and d) within the roller range until the dial indicator shows the predetermined displacement. Then fully tighten the assembly bolts at the adjusted positions.


The displacement of the dial indicator represents the preload of each cage of rollers

As shown in Figure 2-2, move the workbench and lock the remaining adjusting bolts (a and e) in the same sequence.

When installing multiple workbenches, you can first measure the locking torque or sliding resistance of the adjusting bolt of the first one. If you want to install the second one,

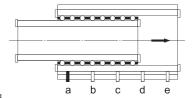
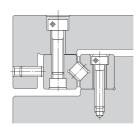
If the locking torque or sliding resistance is the same in the future, approximately the same preload can be applied.

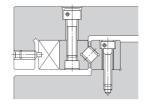




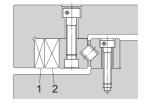
1)

2)



Figure 2 Locking sequence of adjusting bolts

## 16. Example of Gap Adjustment


Please design the adjusting bolt and the roller on the same horizontal line.



The track is usually pushed by adjusting bolts.



When there are requirements for precision and rigidity, pressure plates can be used.

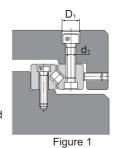


In cases where particularly high precision and rigidity are required, conical wedges 1 and 2 can be used.

Figure 3 Example of Gap Adjustment

#### 17. Preload amount

Excessive preload is the cause of faults such as indentations or shortened lifespan. The allowable preload amount for a row of roller retainers is indicated in the size table. Please confirm the displacement of the roller contact part while tightening the adjustment bolt.


#### 18. Precision of the installation surface

To achieve high walking accuracy, it is necessary to make precision adjustments such as parallelism or straightness of the track installation surface. The parallelism and flatness of the track installation surface should be ground to achieve the same or higher parallelism as the track. At the same time, please install the track correctly and tightly against the installation surface.

### 19. Special installation bolts

Usually, tracks are installed at the parts where clearance adjustment is carried out. As shown in Figure 1, the fixation is achieved by using the bolt holes set on the track. At this time, the diameters of the bolt holes (d1 and D1) should be increased according to the adjustment amount during processing.

In addition, if the installation method shown in Figure 2 must be adopted structurally, the assembly bolts (S) of this track can use the special assembly bolts as shown in Figure 3.



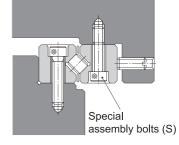



Figure 2

Table 1 Special Installation Bolts

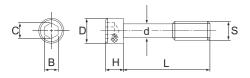
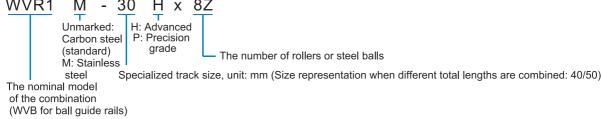
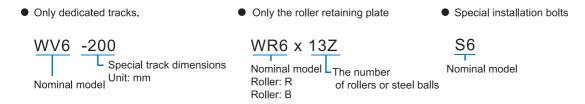



Figure 3 Special Installation Bolts

| Nominal<br>model | S   | d    | D    | Н  | L  | В   | Mass<br>(g) | Applicable orbit |
|------------------|-----|------|------|----|----|-----|-------------|------------------|
| S 3              | М3  | 2.3  | 5    | 3  | 12 | 2.5 | 1           | V3               |
| S 4              | M4  | 3.1  | 5.8  | 4  | 15 | 3   | 2           | V4               |
| S 6              | M5  | 3.9  | 8    | 5  | 20 | 4   | 4           | V6               |
| S 9              | M6  | 4.6  | 8.5  | 6  | 30 | 5   | 5           | V9               |
| S 12             | M8  | 6.25 | 11.3 | 8  | 40 | 6   | 15          | V12              |
| S 15             | M10 | 7.9  | 13.9 | 10 | 45 | 8   | 27          | V15              |
| S 18             | M12 | 9.6  | 15.8 | 12 | 50 | 10  | 43          | V18              |


#### 20.Nominal model number

#### Example of nominal model composition


The composition of the nominal model varies depending on the characteristics of each model. Therefore, please refer to the composition example of the corresponding nominal model.

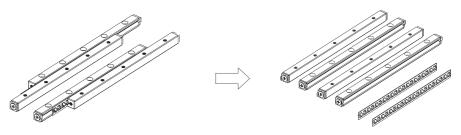
#### Cross roller guide rails, ball guide rails

WVR and WVB types



Note: The above nominal model number indicates a set of equipment, which is a combination of 4 LM tracks and two retaining plates.




When purchasing only the dedicated track, roller retainers, and dedicated installation bolts, please indicate the quantities separately.

### 21. Points to Note When Placing an Order

#### Ordering Unit

A set of crossed roller guides or ball guides refers to the combination state of 4 tracks and 2 retainers.

Ordering examples of crossed roller guides and ball guides



WVR12-400Px14Z One set

Group 1 consists of 4 guide rails and 2 cages.

If you wish to use a combination of tracks and retainers not listed in the size table, please consult WODTOP.

#### 22. Precautions for Use

#### Use

- (1)Please do not disassemble the parts. It may cause functional damage.
- (2)Please do not drop or strike the crossed roller guide rails or ball guide rails. Otherwise, it may cause scratches or damage. Additionally, even if no visible damage is apparent after an impact, it may still lead to functional failure.
- (3) When handling the product, please use protective gloves, safety shoes and other protective equipment as needed to ensure safety.

#### Notes on Use

- (1)Please be careful to prevent the entry of foreign substances such as chips and coolant. Otherwise, it may cause damage.
- (2)When used in environments where chips, corrosive solvents, water, etc. may enter the product interior, please use telescopic guards or protective covers, etc. to prevent them from entering the product interior.
- (3)When foreign substances such as chips are attached, please refill the lubricant after cleaning.
- (4)Please avoid using it at temperatures exceeding 100°C.
- (5)When the stroke is very small, it is difficult for an oil film to form on the contact surface between the rolling surface and the rolling elements,
- which may cause fretting wear. Please use grease with excellent fretting wear resistance. In addition, it is recommended to periodically move the
- full stroke length to form an oil film between the rolling surface and the rolling elements.
- (6)Please do not forcibly hammer the locating parts (pins, keys, etc.) into the product. This may cause indentations on the rolling surface, leading to functional damage.
- (7)Using it in a state where the rolling elements have fallen off may cause initial damage.
- (8)If the rolling element drops out, please stop using this product and contact WODOTP.
- (9)When the rigidity and accuracy of the installed components are insufficient, the bearing load will be concentrated locally,
- resulting in a significant reduction in bearing performance. At the same time, please conduct a thorough discussion on the rigidity and accuracy of the support seat and base, as well as the strength of the fixing bolts. Lubrication
- (1)Please wipe off the anti-rust oil carefully and apply the lubricant before use.
- (2)When lubricating the product, apply the lubricant directly to the rolling surface. Run the product several times over its stroke length to allow the grease to penetrate into the interior of the product.
- (3)Please avoid mixing different lubricants. Even greases with the same thickener may have adverse effects on each other due to differences in additives and other factors.
- (4)When used in places with frequent vibration, dust-free rooms, vacuum, low-temperature and high-temperature and other special environments, please use grease that matches the specifications and environment.
- (5)The consistency of grease varies with temperature. The sliding resistance of crossed roller guides and ball guides changes with consistency. Please note.
- (6)After greasing, due to the stirring resistance of the grease, the sliding resistance of the crossed roller guide rail and ball guide rail may increase. Please be sure to perform running-in operation, fully run-in the grease, and then operate the machinery.
- (7)After the greasing is completed, excess grease may splash around. Please wipe it as needed.
- (8)As the usage time of grease increases, its properties deteriorate and its lubricating performance decreases. Therefore, it is necessary to inspect and replenish the grease according to the usage frequency.
- (9) The lubrication intervals vary depending on the operating conditions and environment. Please determine the final greasing intervals and quantities based on the actual equipment.

# Crossed roller guide rails / ball guide rails

#### Installation

When fixing the track with a through hole using crossed roller guides, use an inner hexagon cylindrical head bolt. However, for the models shown in Table 1, it is recommended to use the screws as recorded.

Table 1 Base Fixing Screws

| Nominal model | Type | The nominal diameter of the screw |
|---------------|------|-----------------------------------|
| WVR1          | M1.4 | M1.4                              |
| WVR2          | M2   | M2                                |

#### Orbit length

The movement of the roller retainer and the ball retainer is carried out in the same direction as the worktable movement at 1/2 of the worktable's displacement. Let the length of the retainer be  $\ell$  and the stroke length be  $\ell$ s. Therefore, in order to prevent the retainer from being in a cantilever state on the track, the length of the track (Lk) should be at least as follows.

Lk≥ 
$$\ell + \frac{\ell_s}{2}$$

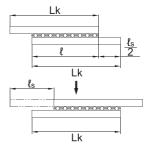
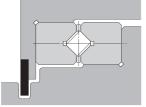


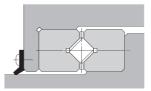

Figure 1

#### Deviation of the cage

Although the cage of the rollers (or steel balls) can operate with extreme precision, due to the influence of mechanical drive vibration, inertial force and shock, etc., the cage may sometimes deviate. If used under the following circumstances, please consult WODTOP.


- (1)When used vertically
- (2)When the pneumatic cylinder is driven
- (3)When driven by a cam
- (4)When driven by a high-speed crankshaft
- (5)Under the action of a large torque load
- (6)When aligning the external baffle of the workbench with the guide rail

#### About the baffle plate


To prevent the cage from falling off, a baffle is installed at the end face of the track. However, please note that if the cage frequently collides with the baffle, it may cause wear on the baffle and loosening of the baffle fixing screws, etc., which could be the cause of the cage falling off.

#### **Dust-proof**

To prevent foreign substances from entering the internal parts of the crossed roller guide and ball guide, the side dust-proof method as shown in Figure 2 can be adopted. For dust-proofing in the front and rear directions, it is recommended to consider using telescopic covers or circular soft telescopic covers.

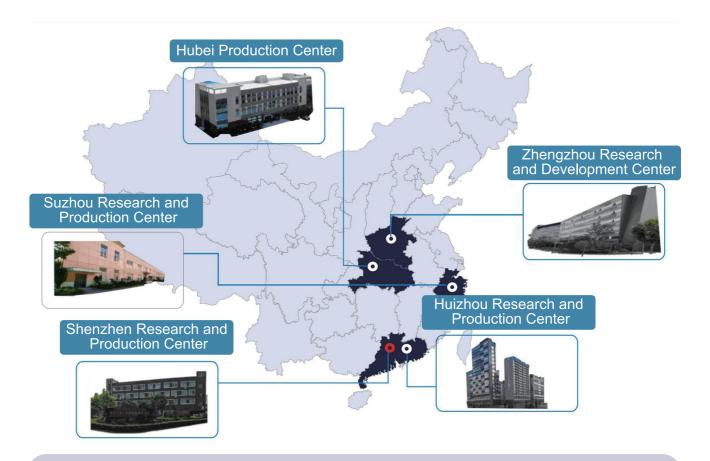


Maze-type dust cover



Contact seal gasket

Figure 2 Dust-proofing Methods


#### storage

When storing crossed roller guides and ball guides, please keep them in the original packaging provided by WODTOP in a horizontal position indoors, and avoid environments with high temperatures, low temperatures and high humidity.

#### Abandonment

Properly dispose of the products as industrial waste.

# Contact Us



Shenzhen Research and Development Center: Shenzhen Tianyi Intelligent Technology Co., Ltd. Address: Room 2701, Building C, Minzhi Shareholding Commercial Center, Beizhan Community, Minzhi Street, Longhua District, Shenzhen City Telephone: 0755-23732560

Hubei Research and Production Center: Hubei Tianyi Intelligent Technology Co., Ltd. Address: No. 59, Yumin Avenue, Economic Development Zone, Zengdu District, Suizhou City, Hubei Province Telephone: 0722-7025001

Suzhou Research and Production Center: Suzhou Tianji Intelligent Technology Address: No. 555, Yingbin West Road, Bajie Town, Kunshan City, Jiangsu Province

Telephone: 0512-57516823

Huizhou Research and Production Center:

Guangdong Tianyi Intelligent Technology Co., Ltd.

Address: Xinhua Avenue, Tongqiao Town, Zhongkai High-tech Zone, Huizhou City, Guangdong Province

Tel: 0752-2168219

Zhengzhou Research and Production Center:

Address: Building C1, Smart Terminal Mobile Phone Industrial Park, Comprehensive Bonded Zone, Zhengzhou City, Henan Province

Telephone: 13902973137



Website URL:www.wodtop.com Email:sales@wodtop.com telephone:0755-23732760 Specifications are subject to change without prior notice. All copyrights reserved; no text, images, or imitation product may be reproduced without the company's consent.



Distributor: